1
|
Wang M, Yu Y, Yang J, Li Q, Zhang W. Multi-functional gas cell in the vacuum ultraviolet free-electron laser beamline. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:063101. [PMID: 38829213 DOI: 10.1063/5.0202267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
A long gas cell, filled with noble gas, is typically positioned between the undulator and the first mirror in the free-electron laser (FEL) beamline to attenuate the laser power as required by the end-stations. In addition to attenuation, the gas cell also serves important functions in various applications, such as spectrometer calibration, resolving power evaluation during beamline commissioning, and filtering of third harmonic in FEL operations. These functions of the gas cell have been successfully tested and implemented at the Dalian Coherent Light Source, a vacuum ultraviolet FEL facility located in Dalian, China. The resolving power of higher than 5000 has been obtained, and accurate calibration has been completed using the gas cell. During operation, the third harmonic of the FEL was attenuated by approximately one order of magnitude with almost the same power of the fundamental. This greatly improved the signal-to-noise ratio at the end-stations.
Collapse
Affiliation(s)
- Mingchang Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Road, Beijing 101408, China
| | - Yong Yu
- Institute of Advanced Science Facilities, 268 Zhenyuan Road, Shenzhen 518107, China
| | - Jiayue Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Qinming Li
- Institute of Advanced Science Facilities, 268 Zhenyuan Road, Shenzhen 518107, China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
2
|
van der Geest MLS, Sadegh N, Meerwijk TM, Wooning EI, Wu L, Bloem R, Castellanos Ortega S, Brouwer AM, Kraus PM. Extreme ultraviolet-excited time-resolved luminescence spectroscopy using an ultrafast table-top high-harmonic generation source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:113004. [PMID: 34852522 DOI: 10.1063/5.0064780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
We present a table-top extreme ultraviolet (XUV) beamline for measuring time- and frequency-resolved XUV-excited optical luminescence (XEOL) with additional femtosecond-resolution XUV transient absorption spectroscopy functionality. XUV pulses are generated via high-harmonic generation using a near-infrared pulse in a noble gas medium and focused to excite luminescence from a solid sample. The luminescence is collimated and guided into a streak camera where its spectral components are temporally resolved with picosecond temporal resolution. We time-resolve XUV-excited luminescence and compare the results to luminescence decays excited at longer wavelengths for three different materials: (i) sodium salicylate, an often used XUV scintillator; (ii) fluorescent labeling molecule 4-carbazole benzoic (CB) acid; and (iii) a zirconium metal oxo-cluster labeled with CB, which is a photoresist candidate for extreme-ultraviolet lithography. Our results establish time-resolved XEOL as a new technique to measure transient XUV-driven phenomena in solid-state samples and identify decay mechanisms of molecules following XUV and soft-x-ray excitation.
Collapse
Affiliation(s)
- M L S van der Geest
- Advanced Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - N Sadegh
- Advanced Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - T M Meerwijk
- Advanced Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - E I Wooning
- Advanced Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - L Wu
- Advanced Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - R Bloem
- Advanced Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - S Castellanos Ortega
- Advanced Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - A M Brouwer
- Advanced Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - P M Kraus
- Advanced Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
3
|
Marroux HJB, Fidler AP, Ghosh A, Kobayashi Y, Gokhberg K, Kuleff AI, Leone SR, Neumark DM. Attosecond spectroscopy reveals alignment dependent core-hole dynamics in the ICl molecule. Nat Commun 2020; 11:5810. [PMID: 33199683 PMCID: PMC7669856 DOI: 10.1038/s41467-020-19496-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/13/2020] [Indexed: 11/08/2022] Open
Abstract
The removal of electrons located in the core shells of molecules creates transient states that live between a few femtoseconds to attoseconds. Owing to these short lifetimes, time-resolved studies of these states are challenging and complex molecular dynamics driven solely by electronic correlation are difficult to observe. Here, we obtain few-femtosecond core-excited state lifetimes of iodine monochloride by using attosecond transient absorption on iodine 4d-16p transitions around 55 eV. Core-level ligand field splitting allows direct access of excited states aligned along and perpendicular to the ICl molecular axis. Lifetimes of 3.5 ± 0.4 fs and 4.3 ± 0.4 fs are obtained for core-hole states parallel to the bond and 6.5 ± 0.6 fs and 6.9 ± 0.6 fs for perpendicular states, while nuclear motion is essentially frozen on this timescale. Theory shows that the dramatic decrease of lifetime for core-vacancies parallel to the covalent bond is a manifestation of non-local interactions with the neighboring Cl atom of ICl.
Collapse
Affiliation(s)
- Hugo J B Marroux
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB, Station 6, CH-1015, Lausanne, Switzerland.
| | - Ashley P Fidler
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aryya Ghosh
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany
| | - Yuki Kobayashi
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Kirill Gokhberg
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany
| | - Alexander I Kuleff
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany
- ELI-ALPS, W. Sandner utca 3, Szeged, 6728, Hungary
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Physics, University of California, Berkeley, CA, 94720, USA.
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Liu Y, Beetar JE, Hosen MM, Dhakal G, Sims C, Kabir F, Etienne MB, Dimitri K, Regmi S, Liu Y, Pathak AK, Kaczorowski D, Neupane M, Chini M. Extreme ultraviolet time- and angle-resolved photoemission setup with 21.5 meV resolution using high-order harmonic generation from a turn-key Yb:KGW amplifier. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:013102. [PMID: 32012559 DOI: 10.1063/1.5121425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Characterizing and controlling electronic properties of quantum materials require direct measurements of nonequilibrium electronic band structures over large regions of momentum space. Here, we demonstrate an experimental apparatus for time- and angle-resolved photoemission spectroscopy using high-order harmonic probe pulses generated by a robust, moderately high power (20 W) Yb:KGW amplifier with a tunable repetition rate between 50 and 150 kHz. By driving high-order harmonic generation (HHG) with the second harmonic of the fundamental 1025 nm laser pulses, we show that single-harmonic probe pulses at 21.8 eV photon energy can be effectively isolated without the use of a monochromator. The on-target photon flux can reach 5 × 1010 photons/s at 50 kHz, and the time resolution is measured to be 320 fs. The relatively long pulse duration of the Yb-driven HHG source allows us to reach an excellent energy resolution of 21.5 meV, which is achieved by suppressing the space-charge broadening using a low photon flux of 1.5 × 108 photons/s at a higher repetition rate of 150 kHz. The capabilities of the setup are demonstrated through measurements in the topological semimetal ZrSiS and the topological insulator Sb2-xGdxTe3.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - John E Beetar
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Md Mofazzel Hosen
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Gyanendra Dhakal
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Christopher Sims
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Firoza Kabir
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Marc B Etienne
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Klauss Dimitri
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Sabin Regmi
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Yong Liu
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3020, USA
| | - Arjun K Pathak
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3020, USA
| | - Dariusz Kaczorowski
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PL-50-950 Wroclaw, Poland
| | - Madhab Neupane
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - Michael Chini
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
5
|
Kaldun A, Blättermann A, Stooß V, Donsa S, Wei H, Pazourek R, Nagele S, Ott C, Lin CD, Burgdörfer J, Pfeifer T. Observing the ultrafast buildup of a Fano resonance in the time domain. Science 2017; 354:738-741. [PMID: 27846603 DOI: 10.1126/science.aah6972] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/30/2016] [Indexed: 11/02/2022]
Abstract
Although the time-dependent buildup of asymmetric Fano line shapes in absorption spectra has been of great theoretical interest in the past decade, experimental verification of the predictions has been elusive. Here, we report the experimental observation of the emergence of a Fano resonance in the prototype system of helium by interrupting the autoionization process of a correlated two-electron excited state with a strong laser field. The tunable temporal gate between excitation and termination of the resonance allows us to follow the formation of a Fano line shape in time. The agreement with ab initio calculations validates our experimental time-gating technique for addressing an even broader range of topics, such as the emergence of electron correlation, the onset of electron-internuclear coupling, and quasi-particle formation.
Collapse
Affiliation(s)
- A Kaldun
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - A Blättermann
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - V Stooß
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - S Donsa
- Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8, 1040 Vienna, Austria
| | - H Wei
- Department of Physics, Kansas State University, 230 Cardwell Hall, Manhattan, KS 66506, USA
| | - R Pazourek
- Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8, 1040 Vienna, Austria
| | - S Nagele
- Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8, 1040 Vienna, Austria
| | - C Ott
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - C D Lin
- Department of Physics, Kansas State University, 230 Cardwell Hall, Manhattan, KS 66506, USA
| | - J Burgdörfer
- Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8, 1040 Vienna, Austria
| | - T Pfeifer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. .,Center for Quantum Dynamics, Universität Heidelberg, 69120 Heidelberg, Germany, EU
| |
Collapse
|
6
|
Xiong G, Yang G, Zhang J, Wei M, Zhao Y, Qing B, Lv M, Yang Z, Wang F, Liu S, Cai H, Liu J. Extreme ultraviolet spectrometer for the Shenguang III laser facility. APPLIED OPTICS 2015; 54:5339-5345. [PMID: 26192833 DOI: 10.1364/ao.54.005339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An extreme ultraviolet spectrometer has been developed for high-energy density physics experiments at the Shenguang-III (SG-III) laser facility. Alternative use of two different varied-line-spacing gratings covers a wavelength range of 10-260 Å. A newly developed x-ray framing camera with single wide strip line is designed to record time-gated spectra with ~70 ps temporal resolution and 20 lp/mm spatial resolution. The width of the strip line is up to 20 mm, enhancing the capability of the spatial resolving measurements. All components of the x-ray framing camera are roomed in an aluminum air box. The whole spectrometer is mounted on a diagnostic instrument manipulator at the SG-III laser facility for the first time. A new alignment method for the spectrometer based on the superimposition of two laser focal spots is developed. The approaches of the alignment including offline and online two steps are described. A carbon spectrum and an aluminum spectrum have been successfully recorded by the spectrometer using 2400 l/mm and 1200 l/mm gratings, respectively. The experimental spectral lines show that the spectral resolution of the spectrometer is about 0.2 Å and 1 Å for the 2400 l/mm and 1200 l/mm gratings, respectively. A theoretical calculation was carried out to estimate the maximum resolving power of the spectrometer.
Collapse
|
7
|
Chini M, Wang X, Cheng Y, Wu Y, Zhao D, Telnov DA, Chu SI, Chang Z. Sub-cycle Oscillations in Virtual States Brought to Light. Sci Rep 2013. [PMCID: PMC3551229 DOI: 10.1038/srep01105] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|