1
|
Jiricek S, Koudelka V, Lacik J, Vejmola C, Kuratko D, Wójcik DK, Raida Z, Hlinka J, Palenicek T. Electrical Source Imaging in Freely Moving Rats: Evaluation of a 12-Electrode Cortical Electroencephalography System. Front Neuroinform 2021; 14:589228. [PMID: 33568980 PMCID: PMC7868391 DOI: 10.3389/fninf.2020.589228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022] Open
Abstract
This work presents and evaluates a 12-electrode intracranial electroencephalography system developed at the National Institute of Mental Health (Klecany, Czech Republic) in terms of an electrical source imaging (ESI) technique in rats. The electrode system was originally designed for translational research purposes. This study demonstrates that it is also possible to use this well-established system for ESI, and estimates its precision, accuracy, and limitations. Furthermore, this paper sets a methodological basis for future implants. Source localization quality is evaluated using three approaches based on surrogate data, physical phantom measurements, and in vivo experiments. The forward model for source localization is obtained from the FieldTrip-SimBio pipeline using the finite-element method. Rat brain tissue extracted from a magnetic resonance imaging template is approximated by a single-compartment homogeneous tetrahedral head model. Four inverse solvers were tested: standardized low-resolution brain electromagnetic tomography, exact low-resolution brain electromagnetic tomography (eLORETA), linear constrained minimum variance (LCMV), and dynamic imaging of coherent sources. Based on surrogate data, this paper evaluates the accuracy and precision of all solvers within the brain volume using error distance and reliability maps. The mean error distance over the whole brain was found to be the lowest in the eLORETA solution through signal to noise ratios (SNRs) (0.2 mm for 25 dB SNR). The LCMV outperformed eLORETA under higher SNR conditions, and exhibiting higher spatial precision. Both of these inverse solvers provided accurate results in a phantom experiment (1.6 mm mean error distance across shallow and 2.6 mm across subcortical testing dipoles). Utilizing the developed technique in freely moving rats, an auditory steady-state response experiment provided results in line with previously reported findings. The obtained results support the idea of utilizing a 12-electrode system for ESI and using it as a solid basis for the development of future ESI dedicated implants.
Collapse
Affiliation(s)
- Stanislav Jiricek
- National Institute of Mental Health, Klecany, Czechia
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | | | - Jaroslav Lacik
- Department of Radioengineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Cestmir Vejmola
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - David Kuratko
- Department of Radioengineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Daniel K. Wójcik
- Department of Radioengineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Zbynek Raida
- Department of Radioengineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Jaroslav Hlinka
- National Institute of Mental Health, Klecany, Czechia
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Palenicek
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
2
|
Yang H, Zhang T, Zhou J, Carney PR, Jiang H. In vivo imaging of epileptic foci in rats using a miniature probe integrating diffuse optical tomography and electroencephalographic source localization. Epilepsia 2015; 56:94-100. [PMID: 25524046 PMCID: PMC4308439 DOI: 10.1111/epi.12880] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The goal of this work is to establish a new dual-modal brain-mapping technique based on diffuse optical tomography (DOT) and electroencephalographic source localization (ESL) that can chronically/intracranially record optical/electroencephalography (EEG) data to precisely map seizures and localize the seizure-onset zone and associated epileptic brain network. METHODS The dual-modal imaging system was employed to image seizures in an experimental acute bicuculline methiodide rat model of focal epilepsy. Depth information derived from DOT was used as constraint in ESL to enhance the image reconstruction. Groups of animals were compared based on localization of seizure foci, either at different positions or at different depths. RESULTS This novel imaging technique successfully localized the seizure-onset zone in rat induced by bicuculline methiodide injected at a depth of 1, 2, and 3 mm, respectively. The results demonstrated that the incorporation of the depth information from DOT into the ESL image reconstruction resulted in more accurate and reliable ESL images. Although the ESL images showed a horizontal shift of the source localization, the DOT identified the seizure focus accurately. In one case, when the bicuculline methiodide (BMI) was injected at a site outside the field of view (FOV) of the DOT/ESL interface, ESL gave false-positive detection of the focus, while DOT showed negative detection. SIGNIFICANCE This study represents the first to identify seizure-onset zone using implantable DOT. In addition, the combination of DOT/ESL has never been documented in neuroscience and epilepsy imaging. This technology will enable us to precisely measure the neural activity and hemodynamic response at exactly the same tissue site and at both cortical and subcortical levels.
Collapse
Affiliation(s)
- Hao Yang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - Tao Zhang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - Junli Zhou
- Department of Pediatrics, University of Florida, Gainesville, FL 32611
| | - Paul R. Carney
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
- Department of Pediatrics, University of Florida, Gainesville, FL 32611
- Department of Neurology, University of Florida, Gainesville, FL 32611
- Department of Neuroscience, University of Florida, Gainesville, FL 32611
| | - Huabei Jiang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| |
Collapse
|