1
|
Nakabayashi M, Tanabe J, Ogura Y, Ichinose M, Shibagaki Y, Kamijo-Ikemori A, Ono Y. Correlation of diabetic renal hypoperfusion with microvascular responses of the skeletal muscle: a rat model study using diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:3900-3913. [PMID: 38867789 PMCID: PMC11166419 DOI: 10.1364/boe.522385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 06/14/2024]
Abstract
Using diffuse correlation spectroscopy, we assessed the renal blood flow and thigh muscle microvascular responses in a rat model of type 2 diabetes. The blood flow index at the renal surface decreased significantly with arterial clamping, cardiac extirpation, and the progression of diabetic endothelial dysfunction. Renal blood flow measured in diabetic and nondiabetic rats also showed a significant correlation with the reactive hyperemic response of the thigh muscle. These results suggest shared microcirculatory dysfunction in the kidney and skeletal muscle and support endothelial responses in the skeletal muscle as a potential noninvasive biomarker of renal hypoperfusion.
Collapse
Affiliation(s)
- Mikie Nakabayashi
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 2148571, Japan
| | - Jun Tanabe
- Division of Nephrology and hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 2168511, Japan
| | - Yuji Ogura
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 2168511, Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, 1-1 Surugadai, Kanda, Chiyoda-ku Tokyo 1018301, Japan
| | - Yugo Shibagaki
- Division of Nephrology and hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 2168511, Japan
| | - Atsuko Kamijo-Ikemori
- Division of Nephrology and hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 2168511, Japan
- Department of Anatomy, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 2168511, Japan
| | - Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 2148571, Japan
| |
Collapse
|
2
|
Liu X, Gu Y, Huang C, Zhao M, Cheng Y, Jawdeh EGA, Bada HS, Chen L, Yu G. Simultaneous measurements of tissue blood flow and oxygenation using a wearable fiber-free optical sensor. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200314RR. [PMID: 33515216 PMCID: PMC7846117 DOI: 10.1117/1.jbo.26.1.012705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/12/2021] [Indexed: 05/08/2023]
Abstract
SIGNIFICANCE There is an essential need to develop wearable multimodality technologies that can continuously measure both blood flow and oxygenation in deep tissues to investigate and manage various vascular/cellular diseases. AIM To develop a wearable dual-wavelength diffuse speckle contrast flow oximetry (DSCFO) for simultaneous measurements of blood flow and oxygenation variations in deep tissues. APPROACH A wearable fiber-free DSCFO probe was fabricated using 3D printing to confine two small near-infrared laser diodes and a tiny CMOS camera in positions for DSCFO measurements. The spatial diffuse speckle contrast and light intensity measurements at the two different wavelengths enable quantification of tissue blood flow and oxygenation, respectively. The DSCFO was first calibrated using tissue phantoms and then tested in adult forearms during artery cuff occlusion. RESULTS Phantom tests determined the largest effective source-detector distance (15 mm) and optimal camera exposure time (10 ms) and verified the accuracy of DSCFO in measuring absorption coefficient variations. The DSCFO detected substantial changes in forearm blood flow and oxygenation resulting from the artery occlusion, which meet physiological expectations and are consistent with previous study results. CONCLUSIONS The wearable DSCFO may be used for continuous and simultaneous monitoring of blood flow and oxygenation variations in freely behaving subjects.
Collapse
Affiliation(s)
- Xuhui Liu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Yutong Gu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Chong Huang
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Mingjun Zhao
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Yanda Cheng
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Elie G. Abu Jawdeh
- University of Kentucky, Department of Pediatrics, College of Medicine, Lexington, Kentucky, United States
| | - Henrietta S. Bada
- University of Kentucky, Department of Pediatrics, College of Medicine, Lexington, Kentucky, United States
| | - Lei Chen
- University of Kentucky, Department of Physiology, Spinal Cord and Brain Injury Research Center, Lexington, Kentucky, United States
| | - Guoqiang Yu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
- Address all correspondence to Guoqiang Yu,
| |
Collapse
|
3
|
Lee K. Diffuse Speckle Contrast Analysis (DSCA) for Deep Tissue Blood Flow Monitoring. ADVANCED BIOMEDICAL ENGINEERING 2020. [DOI: 10.14326/abe.9.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Kijoon Lee
- College of Transdisciplinary Studies, Daegu-Gyeongbuk Institute of Science and Technology (DGIST)
| |
Collapse
|
4
|
Ono Y, Esaki K, Takahashi Y, Nakabayashi M, Ichinose M, Lee K. Muscular blood flow responses as an early predictor of the severity of diabetic neuropathy at a later stage in streptozotocin-induced type I diabetic rats: a diffuse correlation spectroscopy study. BIOMEDICAL OPTICS EXPRESS 2018; 9:4539-4551. [PMID: 30615744 PMCID: PMC6157794 DOI: 10.1364/boe.9.004539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/10/2018] [Accepted: 08/16/2018] [Indexed: 06/09/2023]
Abstract
We propose a novel application of diffuse correlation spectroscopy to evaluate microvascular malfunctions of muscle tissue affected by hyperglycemia and determine their correlation with the severity of diabetic neuropathy at a later stage. Microvascular responses of the thigh muscle and the mechanical pain threshold of the hind paw of streptozotocin-induced type I diabetic rats were continuously monitored once per week for 70 days. Significantly decreased baseline blood flow and reactive hyperemia responses were observed as early as 1 week after hyperglycemia induction. The reactive hyperemia response at 2 weeks of hyperglycemia was highly correlated with the mechanical pain threshold at 8 weeks, at which time a decreased pain threshold was statistically confirmed in hyperglycemic rats relative to controls.
Collapse
Affiliation(s)
- Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 2148571, Japan
| | - Kimiya Esaki
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 2148571, Japan
| | - Yuta Takahashi
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 2148571, Japan
| | - Mikie Nakabayashi
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 2148571, Japan
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 2148571, Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, 1-1 Surugadai, Kanda, Chiyoda-ku, Tokyo 1018301, Japan
| | - Kijoon Lee
- College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, South Korea
| |
Collapse
|
5
|
Johansson JD, Mireles M, Morales-Dalmau J, Farzam P, Martínez-Lozano M, Casanovas O, Durduran T. Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system. BIOMEDICAL OPTICS EXPRESS 2016; 7:481-98. [PMID: 26977357 PMCID: PMC4771466 DOI: 10.1364/boe.7.000481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/19/2015] [Accepted: 01/13/2016] [Indexed: 05/24/2023]
Abstract
A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma.
Collapse
Affiliation(s)
- Johannes D. Johansson
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Miguel Mireles
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Jordi Morales-Dalmau
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Parisa Farzam
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Mar Martínez-Lozano
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute–IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona), Spain
| | - Oriol Casanovas
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute–IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona), Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona, Spain
| |
Collapse
|
6
|
Noninvasive Multimodal Imaging to Predict Recovery of Locomotion after Extended Limb Ischemia. PLoS One 2015; 10:e0137430. [PMID: 26368024 PMCID: PMC4569513 DOI: 10.1371/journal.pone.0137430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/17/2015] [Indexed: 01/19/2023] Open
Abstract
Acute limb ischemia is a common cause of morbidity and mortality following trauma both in civilian centers and in combat related injuries. Rapid determination of tissue viability and surgical restoration of blood flow are desirable, but not always possible. We sought to characterize the response to increasing periods of hind limb ischemia in a porcine model such that we could define a period of critical ischemia (the point after which irreversible neuromuscular injury occurs), evaluate non-invasive methods for characterizing that ischemia, and establish a model by which we could predict whether or not the animal’s locomotion would return to baselines levels post-operatively. Ischemia was induced by either application of a pneumatic tourniquet or vessel occlusion (performed by clamping the proximal iliac artery and vein at the level of the inguinal ligament). The limb was monitored for the duration of the procedure with both 3-charge coupled device (3CCD) and infrared (IR) imaging for tissue oxygenation and perfusion, respectively. The experimental arms of this model are effective at inducing histologically evident muscle injury with some evidence of expected secondary organ damage, particularly in animals with longer ischemia times. Noninvasive imaging data shows excellent correlation with post-operative functional outcomes, validating its use as a non-invasive means of viability assessment, and directly monitors post-occlusive reactive hyperemia. A classification model, based on partial-least squares discriminant analysis (PLSDA) of imaging variables only, successfully classified animals as “returned to normal locomotion” or “did not return to normal locomotion” with 87.5% sensitivity and 66.7% specificity after cross-validation. PLSDA models generated from non-imaging data were not as accurate (AUC of 0.53) compared the PLSDA model generated from only imaging data (AUC of 0.76). With some modification, this limb ischemia model could also serve as a means on which to test therapies designed to prolong the time before critical ischemia.
Collapse
|
7
|
High Frequency Sampling of TTL Pulses on a Raspberry Pi for Diffuse Correlation Spectroscopy Applications. SENSORS 2015; 15:19709-22. [PMID: 26274961 PMCID: PMC4570393 DOI: 10.3390/s150819709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/27/2015] [Accepted: 08/06/2015] [Indexed: 01/23/2023]
Abstract
Diffuse Correlation Spectroscopy (DCS) is a well-established optical technique that has been used for non-invasive measurement of blood flow in tissues. Instrumentation for DCS includes a correlation device that computes the temporal intensity autocorrelation of a coherent laser source after it has undergone diffuse scattering through a turbid medium. Typically, the signal acquisition and its autocorrelation are performed by a correlation board. These boards have dedicated hardware to acquire and compute intensity autocorrelations of rapidly varying input signal and usually are quite expensive. Here we show that a Raspberry Pi minicomputer can acquire and store a rapidly varying time-signal with high fidelity. We show that this signal collected by a Raspberry Pi device can be processed numerically to yield intensity autocorrelations well suited for DCS applications. DCS measurements made using the Raspberry Pi device were compared to those acquired using a commercial hardware autocorrelation board to investigate the stability, performance, and accuracy of the data acquired in controlled experiments. This paper represents a first step toward lowering the instrumentation cost of a DCS system and may offer the potential to make DCS become more widely used in biomedical applications.
Collapse
|
8
|
Huang C, Radabaugh JP, Aouad RK, Lin Y, Gal TJ, Patel AB, Valentino J, Shang Y, Yu G. Noncontact diffuse optical assessment of blood flow changes in head and neck free tissue transfer flaps. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:075008. [PMID: 26187444 PMCID: PMC4696658 DOI: 10.1117/1.jbo.20.7.075008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/23/2015] [Indexed: 05/18/2023]
Abstract
Knowledge of tissue blood flow (BF) changes after free tissue transfer may enable surgeons to predict the failure of flap thrombosis at an early stage. This study used our recently developed noncontact diffuse correlation spectroscopy to monitor dynamic BF changes in free flaps without getting in contact with the targeted tissue. Eight free flaps were elevated in patients with head and neck cancer; one of the flaps failed. Multiple BF measurements probing the transferred tissue were performed during and post the surgical operation. Postoperative BF values were normalized to the intraoperative baselines (assigning "1") for the calculation of relative BF change (rBF). The rBF changes over the seven successful flaps were 1.89 ± 0.15, 2.26 ± 0.13, and 2.43 ± 0.13 (mean ± standard error), respectively, on postoperative days 2, 4, and 7. These postoperative values were significantly higher than the intraoperative baseline values (p<0.001), indicating a gradual recovery of flap vascularity after the tissue transfer. By contrast, rBF changes observed from the unsuccessful flaps were 1.14 and 1.34, respectively, on postoperative days 2 and 4, indicating less flow recovery. Measurement of BF recovery after flap anastomosis holds the potential to act early to salvage ischemic flaps.
Collapse
Affiliation(s)
- Chong Huang
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Jeffrey P. Radabaugh
- University of Kentucky College of Medicine, Department of Otolaryngology–Head and Neck Surgery, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Rony K. Aouad
- University of Kentucky College of Medicine, Department of Otolaryngology–Head and Neck Surgery, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Yu Lin
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Thomas J. Gal
- University of Kentucky College of Medicine, Department of Otolaryngology–Head and Neck Surgery, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Amit B. Patel
- University of Kentucky College of Medicine, Department of Otolaryngology–Head and Neck Surgery, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Joseph Valentino
- University of Kentucky College of Medicine, Department of Otolaryngology–Head and Neck Surgery, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Yu Shang
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Guoqiang Yu
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
- Address all correspondence to: Guoqiang Yu,
| |
Collapse
|
9
|
Zhang X, Cheng R, Rowe D, Sethu P, Daugherty A, Yu G, Shin HY. Shear-sensitive regulation of neutrophil flow behavior and its potential impact on microvascular blood flow dysregulation in hypercholesterolemia. Arterioscler Thromb Vasc Biol 2014; 34:587-93. [PMID: 24458712 DOI: 10.1161/atvbaha.113.302868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Shear stress-induced pseudopod retraction is an anti-inflammatory measure that minimizes neutrophil activity and is regulated by membrane cholesterol. We tested the hypothesis that a hypercholesterolemic impairment of shear mechanotransduction alters the neutrophil flow behavior leading to microvascular dysfunction. APPROACH AND RESULTS We examined the shear effects on the flow behavior of human leukocytes. When subjected to shearing during cone-plate viscometry, leukocyte suspensions exhibited parallel time-dependent reductions in viscosity and pseudopod activity. Shear-induced reductions in suspension viscosity were attenuated by membrane cholesterol enrichment. We also showed that enhanced pseudopod activity of leukocyte suspensions in 10% hematocrit significantly (P<0.05) raised the flow resistance of microvascular mimics. These results implicate an impaired neutrophil pseudopod retraction response to shear in hypercholesterolemic microvascular dysfunction. We confirmed this using near-infrared diffuse correlation spectroscopy to assess skeletal muscle blood flow regulation in the hindlimbs of mice subjected to reactive hyperemia. Using a custom protocol for the mouse, we extrapolated an adjusted peak flow and time to adjusted peak flow to quantify the early phase of the blood flow recovery response during reactive hyperemia when shear mechanobiology likely has a maximal impact. Compared with mice on normal diet, hypercholesterolemic mice exhibited significantly (P<0.05) reduced adjusted peak flow and prolonged time to adjusted peak flow which correlated (r=0.4 and r=-0.3, respectively) with neutrophil shear responsiveness and were abrogated by neutropenia. CONCLUSIONS These results provide the first evidence that the neutrophils contribute to tissue blood flow autoregulation. Moreover, a deficit in the neutrophil responsiveness to shear may be a feature of hypercholesterolemia-related microvascular dysfunction.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- From the Department of Biomedical Engineering, University of Kentucky, Lexington (X.Z., R.C., D.R., G.Y., H.Y.S); Math, Science, and Technology Center, Paul L. Dunbar High School, Lexington, KY (D.R.); Division of Cardiovascular Disease, University of Alabama at Birmingham (P.S.); and Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | | | | | | | | | | | | |
Collapse
|