1
|
Zhang J, Frank C, Byers P, Djordjevic S, Docheva D, Clausen-Schaumann H, Sudhop S, Huber HP. Dynamics of single cell femtosecond laser printing. BIOMEDICAL OPTICS EXPRESS 2023; 14:2276-2292. [PMID: 37206114 PMCID: PMC10191647 DOI: 10.1364/boe.480286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 05/21/2023]
Abstract
In the present study, we investigated the dynamics of a femtosecond (fs) laser induced bio-printing with cell-free and cell-laden jets under the variation of laser pulse energy and focus depth, by using time-resolved imaging. By increasing the laser pulse energy or decreasing the focus depth thresholds for a first and second jet are exceeded and more laser pulse energy is converted to kinetic jet energy. With increasing jet velocity, the jet behavior changes from a well-defined laminar jet, to a curved jet and further to an undesired splashing jet. We quantified the observed jet forms with the dimensionless hydrodynamic Weber and Rayleigh numbers and identified the Rayleigh breakup regime as the preferred process window for single cell bioprinting. Herein, the best spatial printing resolution of 42 ± 3 µm and single cell positioning precision of 12.4 µm are reached, which is less than one single cell diameter about 15 µm.
Collapse
Affiliation(s)
- Jun Zhang
- Lasercenter, Munich University of Applied Sciences, Lothstrasse 34, 80335 Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine CANTER, Munich University of Applied Sciences, Lothstrasse 34, 80335 Munich, Germany
- Center for NanoScience, University of Munich, 80799 Munich, Germany
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Wuerzburg, 97076 Wuerzburg, Germany
| | - Christine Frank
- Lasercenter, Munich University of Applied Sciences, Lothstrasse 34, 80335 Munich, Germany
| | - Patrick Byers
- Lasercenter, Munich University of Applied Sciences, Lothstrasse 34, 80335 Munich, Germany
| | - Sasa Djordjevic
- Lasercenter, Munich University of Applied Sciences, Lothstrasse 34, 80335 Munich, Germany
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Wuerzburg, 97076 Wuerzburg, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine CANTER, Munich University of Applied Sciences, Lothstrasse 34, 80335 Munich, Germany
- Center for NanoScience, University of Munich, 80799 Munich, Germany
| | - Stefanie Sudhop
- Center for Applied Tissue Engineering and Regenerative Medicine CANTER, Munich University of Applied Sciences, Lothstrasse 34, 80335 Munich, Germany
- Center for NanoScience, University of Munich, 80799 Munich, Germany
| | - Heinz P Huber
- Lasercenter, Munich University of Applied Sciences, Lothstrasse 34, 80335 Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine CANTER, Munich University of Applied Sciences, Lothstrasse 34, 80335 Munich, Germany
| |
Collapse
|
2
|
Laser-based bioprinting for multilayer cell patterning in tissue engineering and cancer research. Essays Biochem 2021; 65:409-416. [PMID: 34223612 DOI: 10.1042/ebc20200093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
3D printing, or additive manufacturing, is a process for patterning functional materials based on the digital 3D model. A bioink that contains cells, growth factors, and biomaterials are utilized for assisting cells to develop into tissues and organs. As a promising technique in regenerative medicine, many kinds of bioprinting platforms have been utilized, including extrusion-based bioprinting, inkjet bioprinting, and laser-based bioprinting. Laser-based bioprinting, a kind of bioprinting technology using the laser as the energy source, has advantages over other methods. Compared with inkjet bioprinting and extrusion-based bioprinting, laser-based bioprinting is nozzle-free, which makes it a valid tool that can adapt to the viscosity of the bioink; the cell viability is also improved because of elimination of nozzle, which could cause cell damage when the bioinks flow through a nozzle. Accurate tuning of the laser source and bioink may provide a higher resolution for reconstruction of tissue that may be transplanted used as an in vitro disease model. Here, we introduce the mechanism of this technology and the essential factors in the process of laser-based bioprinting. Then, the most potential applications are listed, including tissue engineering and cancer models. Finally, we present the challenges and opportunities faced by laser-based bioprinting.
Collapse
|
3
|
Antoshin A, Churbanov S, Minaev N, Zhang D, Zhang Y, Shpichka A, Timashev P. LIFT-bioprinting, is it worth it? ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bprint.2019.e00052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Imamura T, Shimamura M, Ogawa T, Minagawa T, Nagai T, Silwal Gautam S, Ishizuka O. Biofabricated Structures Reconstruct Functional Urinary Bladders in Radiation-Injured Rat Bladders. Tissue Eng Part A 2018; 24:1574-1587. [DOI: 10.1089/ten.tea.2017.0533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Tetsuya Imamura
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | | | - Teruyuki Ogawa
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Tomonori Minagawa
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Takashi Nagai
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | | | - Osamu Ishizuka
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| |
Collapse
|
5
|
Petit S, Kérourédan O, Devillard R, Cormier E. Femtosecond versus picosecond laser pulses for film-free laser bioprinting. APPLIED OPTICS 2017; 56:8648-8655. [PMID: 29091678 DOI: 10.1364/ao.56.008648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
We investigate the properties of microjets in the context of film-free laser induced forward transfer in the femtosecond and picosecond regimes. The influence of the pulse duration (ranging from 0.4 to 12 ps) and the energy (ranging from 6 to 12 μJ) is systematically studied on the height, diameter, speed, volume, and shape of the jets. The 400 fs pulses generate thin and stable jets compatible with bioprinting, while 14 ps pulses generate more unstable jets. A pulse duration around 8 ps seems, therefore, to be an interesting trade-off to cover many bio-applications of microjets generated by lasers.
Collapse
|
6
|
Vinson BT, Sklare SC, Chrisey DB. Laser-based cell printing techniques for additive biomanufacturing. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Datta P, Ayan B, Ozbolat IT. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater 2017; 51:1-20. [PMID: 28087487 DOI: 10.1016/j.actbio.2017.01.035] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022]
Abstract
Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. STATEMENT OF SIGNIFICANCE Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision, which holds a great promise in fabrication of vascular or vascularized tissues for transplantation use. Although a great progress has recently been made on building perfusable tissues and branched vascular network, a comprehensive review on the state-of-the-art in vascular and vascularized tissue bioprinting has not reported so far. This contribution is thus significant because it discusses the use of three major bioprinting modalities in vascular tissue biofabrication for the first time in the literature and compares their strengths and limitations in details. Moreover, the use of scaffold-based and scaffold-free bioprinting is expounded within the domain of vascular tissue fabrication.
Collapse
|