1
|
Lee C, Kim S, Hugonnet H, Lee M, Park W, Jeon JS, Park Y. Label-free three-dimensional observations and quantitative characterisation of on-chip vasculogenesis using optical diffraction tomography. LAB ON A CHIP 2021; 21:494-501. [PMID: 33492325 DOI: 10.1039/d0lc01061h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Label-free, three-dimensional (3D) quantitative observations of on-chip vasculogenesis were achieved using optical diffraction tomography. Exploiting 3D refractive index maps as an intrinsic imaging contrast, the vascular structures, multicellular activities, and subcellular organelles of endothelial cells were imaged and analysed throughout vasculogenesis to characterise mature vascular networks without exogenous labelling.
Collapse
Affiliation(s)
- Chungha Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seunggyu Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Herve Hugonnet
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Moosung Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Weisun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea. and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea and Tomocube Inc., Daejeon, 34109, Republic of Korea
| |
Collapse
|
2
|
Kim D, Lee S, Lee M, Oh J, Yang SA, Park Y. Holotomography: Refractive Index as an Intrinsic Imaging Contrast for 3-D Label-Free Live Cell Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:211-238. [PMID: 33834439 DOI: 10.1007/978-981-33-6064-8_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Live cell imaging provides essential information in the investigation of cell biology and related pathophysiology. Refractive index (RI) can serve as intrinsic optical imaging contrast for 3-D label-free and quantitative live cell imaging, and provide invaluable information to understand various dynamics of cells and tissues for the study of numerous fields. Recently significant advances have been made in imaging methods and analysis approaches utilizing RI, which are now being transferred to biological and medical research fields, providing novel approaches to investigate the pathophysiology of cells. To provide insight into how RI can be used as an imaging contrast for imaging of biological specimens, here we provide the basic principle of RI-based imaging techniques and summarize recent progress on applications, ranging from microbiology, hematology, infectious diseases, hematology, and histopathology.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Sangyun Lee
- Department of Physics, KAIST, Daejeon, South Korea
| | - Moosung Lee
- Department of Physics, KAIST, Daejeon, South Korea
| | - Juntaek Oh
- Department of Physics, KAIST, Daejeon, South Korea
| | - Su-A Yang
- Department of Biological Sciences, KAIST, Daejeon, South Korea
| | - YongKeun Park
- Department of Physics, KAIST, Daejeon, South Korea. .,KAIST Institute Health Science and Technology, Daejeon, South Korea. .,Tomocube Inc., Daejeon, South Korea.
| |
Collapse
|
3
|
Park HS, Eldridge WJ, Yang WH, Crose M, Ceballos S, Roback JD, Chi JTA, Wax A. Quantitative phase imaging of erythrocytes under microfluidic constriction in a high refractive index medium reveals water content changes. MICROSYSTEMS & NANOENGINEERING 2019; 5:63. [PMID: 31814994 PMCID: PMC6885519 DOI: 10.1038/s41378-019-0113-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/06/2019] [Accepted: 10/15/2019] [Indexed: 05/19/2023]
Abstract
Changes in the deformability of red blood cells can reveal a range of pathologies. For example, cells which have been stored for transfusion are known to exhibit progressively impaired deformability. Thus, this aspect of red blood cells has been characterized previously using a range of techniques. In this paper, we show a novel approach for examining the biophysical response of the cells with quantitative phase imaging. Specifically, optical volume changes are observed as the cells transit restrictive channels of a microfluidic chip in a high refractive index medium. The optical volume changes indicate an increase of cell's internal density, ostensibly due to water displacement. Here, we characterize these changes over time for red blood cells from two subjects. By storage day 29, a significant decrease in the magnitude of optical volume change in response to mechanical stress was witnessed. The exchange of water with the environment due to mechanical stress is seen to modulate with storage time, suggesting a potential means for studying cell storage.
Collapse
Affiliation(s)
- Han Sang Park
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Will J. Eldridge
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Wen-Hsuan Yang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708 USA
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC 27708 USA
- Department of Biochemistry, Duke University, Durham, NC 27708 USA
| | - Michael Crose
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Silvia Ceballos
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Jen-Tsan Ashley Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708 USA
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC 27708 USA
| | - Adam Wax
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| |
Collapse
|
4
|
Park HS, Ceballos S, Eldridge WJ, Wax A. Invited Article: Digital refocusing in quantitative phase imaging for flowing red blood cells. APL PHOTONICS 2018; 3:110802. [PMID: 31192306 PMCID: PMC6561492 DOI: 10.1063/1.5043536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/07/2018] [Indexed: 05/19/2023]
Abstract
Quantitative phase imaging (QPI) offers high optical path length sensitivity, probing nanoscale features of live cells, but it is typically limited to imaging just few static cells at a time. To enable utility as a biomedical diagnostic modality, higher throughput is needed. To meet this need, methods for imaging cells in flow using QPI are in development. An important need for this application is to enable accurate quantitative analysis. However, this can be complicated when cells shift focal planes during flow. QPI permits digital refocusing since the complex optical field is measured. Here we analyze QPI images of moving red blood cells with an emphasis on choosing a quantitative criterion for digitally refocusing cell images. Of particular interest is the influence of optical absorption which can skew refocusing algorithms. Examples of refocusing of holographic images of flowing red blood cells using different approaches are presented and analyzed.
Collapse
Affiliation(s)
- Han Sang Park
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Silvia Ceballos
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Will J Eldridge
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Adam Wax
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|