1
|
Gros R, Rodriguez-Nunez O, Felger L, Moriconi S, McKinley R, Pierangelo A, Novikova T, Vassella E, Schucht P, Hewer E, Maragkou T. Characterization of Polarimetric Properties in Various Brain Tumor Types Using Wide-Field Imaging Mueller Polarimetry. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:4120-4132. [PMID: 38865222 DOI: 10.1109/tmi.2024.3413288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Neuro-oncological surgery is the primary brain cancer treatment, yet it faces challenges with gliomas due to their invasiveness and the need to preserve neurological function. Hence, radical resection is often unfeasible, highlighting the importance of precise tumor margin delineation to prevent neurological deficits and improve prognosis. Imaging Mueller polarimetry, an effective modality in various organ tissues, seems a promising approach for tumor delineation in neurosurgery. To further assess its use, we characterized the polarimetric properties by analysing 45 polarimetric measurements of 27 fresh brain tumor samples, including different tumor types with a strong focus on gliomas. Our study integrates a wide-field imaging Mueller polarimetric system and a novel neuropathology protocol, correlating polarimetric and histological data for accurate tissue identification. An image processing pipeline facilitated the alignment and overlay of polarimetric images and histological masks. Variations in depolarization values were observed for grey and white matter of brain tumor tissue, while differences in linear retardance were seen only within white matter of brain tumor tissue. Notably, we identified pronounced optical axis azimuth randomization within tumor regions. This study lays the foundation for machine learning-based brain tumor segmentation algorithms using polarimetric data, facilitating intraoperative diagnosis and decision making.
Collapse
|
2
|
Yang H, Liu B, Park J, Blaise O, Duchesne C, Honnorat B, Vizet J, Rousseau A, Pierangelo A. Mueller polarimetric imaging as a tool for detecting the effect of non-thermal plasma treatment on the skin. BIOMEDICAL OPTICS EXPRESS 2023; 14:2736-2755. [PMID: 37342717 PMCID: PMC10278602 DOI: 10.1364/boe.482753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/23/2023]
Abstract
Non-thermal plasma (NTP) is a promising technique studied for several medical applications such as wound healing or tumor reduction. The detection of microstructural variations in the skin is currently performed by histological methods, which are time-consuming and invasive. This study aims to show that full-field Mueller polarimetric imaging is suitable for fast and without-contact detection of skin microstructure modifications induced by plasma treatment. Defrosted pig skin is treated by NTP and analyzed by MPI within 30 minutes. NTP is shown to modify the linear phase retardance and the total depolarization. The tissue modifications are inhomogeneous and present distinct features at the center and the fringes of the plasma-treated area. According to control groups, tissue alterations are primarily caused by the local heating concomitant to plasma-skin interaction.
Collapse
Affiliation(s)
- Hang Yang
- LPP, Ecole Polytechnique, CNRS, IP Paris,
Sorbonne Université, Palaiseau,
91128, France
| | - Bo Liu
- LPP, Ecole Polytechnique, CNRS, IP Paris,
Sorbonne Université, Palaiseau,
91128, France
| | - Junha Park
- LPICM, Ecole Polytechnique, CNRS, IP Paris, Palaiseau, 91128, France
| | - Océane Blaise
- LPP, Ecole Polytechnique, CNRS, IP Paris,
Sorbonne Université, Palaiseau,
91128, France
| | - Constance Duchesne
- LPP, Ecole Polytechnique, CNRS, IP Paris,
Sorbonne Université, Palaiseau,
91128, France
| | - Bruno Honnorat
- LPP, Ecole Polytechnique, CNRS, IP Paris,
Sorbonne Université, Palaiseau,
91128, France
| | - Jérémy Vizet
- LPICM, Ecole Polytechnique, CNRS, IP Paris, Palaiseau, 91128, France
| | - Antoine Rousseau
- LPP, Ecole Polytechnique, CNRS, IP Paris,
Sorbonne Université, Palaiseau,
91128, France
| | - Angelo Pierangelo
- LPICM, Ecole Polytechnique, CNRS, IP Paris, Palaiseau, 91128, France
| |
Collapse
|
3
|
Felger L, Rodríguez-Núñez O, Gros R, Maragkou T, McKinley R, Moriconi S, Murek M, Zubak I, Novikova T, Pierangelo A, Schucht P. Robustness of the wide-field imaging Mueller polarimetry for brain tissue differentiation and white matter fiber tract identification in a surgery-like environment: an ex vivo study. BIOMEDICAL OPTICS EXPRESS 2023; 14:2400-2415. [PMID: 37206128 PMCID: PMC10191649 DOI: 10.1364/boe.486438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/21/2023]
Abstract
During neurooncological surgery, the visual differentiation of healthy and diseased tissue is often challenging. Wide-field imaging Muller polarimetry (IMP) is a promising technique for tissue discrimination and in-plane brain fiber tracking in an interventional setup. However, the intraoperative implementation of IMP requires realizing imaging in the presence of remanent blood, and complex surface topography resulting from the use of an ultrasonic cavitation device. We report on the impact of both factors on the quality of polarimetric images of the surgical resection cavities reproduced in fresh animal cadaveric brains. The robustness of IMP is observed under adverse experimental conditions, suggesting a feasible translation of IMP for in vivo neurosurgical applications.
Collapse
Affiliation(s)
- Leonard Felger
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Omar Rodríguez-Núñez
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Romain Gros
- Institute of Tissue Medicine and Pathology, University of Bern, 3010 Bern, Switzerland
| | - Theoni Maragkou
- Institute of Tissue Medicine and Pathology, University of Bern, 3010 Bern, Switzerland
| | - Richard McKinley
- SCAN, University Institute of Diagnostic and Interventional Radiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Stefano Moriconi
- SCAN, University Institute of Diagnostic and Interventional Radiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Michael Murek
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Irena Zubak
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Tatiana Novikova
- LPICM, CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| | | | - Philippe Schucht
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
4
|
Rehbinder J, Dellinger J, Varin B, Torzynski M, Takakura Y, Heinrich C, Zallat J. Liquid-crystal based drift-free polarization modulators: Part II. Ultra-stable Stokes and Mueller polarimeters. OPTICS EXPRESS 2023; 31:10882-10893. [PMID: 37157624 DOI: 10.1364/oe.480774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We have previously reported a new design for drift-free liquid-crystal polarization modulators (LCMs) based on liquid-crystal variable retarders (LCVRs). Here, we study their performance on Stokes and Mueller polarimeters. LCMs have polarimetric responses similar to LCVRs and can be used as temperature-stable alternatives to many LCVR-based polarimeters. We have built an LCM-based polarization state analyzer (PSA) and compared its performance to an equivalent LCVR-based PSA. Our system parameters remained stable over a wide range of temperature, precisely from 25°C to 50°C. Accurate Stokes and Mueller measurements have been conducted, paving the way to calibration-free polarimeters for demanding applications.
Collapse
|
5
|
Wu J, Li Y, Ning T, Long C, Zhou G. Optimal design for a broadband Stokes polarimeter of liquid crystal variable retarders. APPLIED OPTICS 2022; 61:7490-7497. [PMID: 36256054 DOI: 10.1364/ao.463635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Liquid crystal variable retarders (LCVRs) are the core component for rapid and high-precision broadband polarization detection. Additionally, the ability to suppress noise greatly affects the results of polarization measurements. In this work, a solving optimal design approach is proposed for building a high-performance broadband Stokes polarimeter based on LCVRs, which greatly reduces the influences of data fluctuation from liquid crystals and dispersion on the experimental results. This method relies on evaluation criteria of the condition number (CN) to build a gradual optimization that includes the following three steps: fixing the fast axis angles, meeting the requirements of a wideband, and ensuring a minimum CN. Additionally, with the method of increasing the measurement analysis vector, we ensure the whole band in the low CN and offer a solution to the problem of the difficulty in optimizing the LCVRs caused by the large change of retardance at 490-700 nm. Finally, the rapid and high-precision Stokes measurement of 490-700 nm wavelengths is achieved. We test the performance of the polarimeter after optimization in our simulation and experiment, which shows that the total RMS error is less than 0.032 and the single point error is small. This work not only reduces the influence of LCVR error on the experimental results but also makes it possible to apply LCVRs to 490-700 nm detection.
Collapse
|
6
|
Rehbinder J, Vizet J, Park J, Ossikovski R, Vanel JC, Nazac A, Pierangelo A. Depolarization imaging for fast and non-invasive monitoring of cervical microstructure remodeling in vivo during pregnancy. Sci Rep 2022; 12:12321. [PMID: 35853917 PMCID: PMC9296502 DOI: 10.1038/s41598-022-15852-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/30/2022] [Indexed: 11/12/2022] Open
Abstract
The cervix plays a crucial role in conception, maintenance of pregnancy, and childbirth. The mechanical properties of a pregnant woman's cervix change dramatically during gestation due to a remodeling of its microstructure, necessary for delivery. However, external factors can accelerate this process and lead to prematurity, the primary cause of perinatal mortality worldwide, due to the inefficiency of existing diagnostic methods. This study shows that polarized light is a powerful tool to probe the cervical microstructure during pregnancy. A wide-field multispectral polarimetric imaging system was fabricated to explore in vivo the cervix of full-term pregnant women. The polarimetric properties of the cervix change significantly with pregnancy progression. In particular, a set of several depolarization parameters (intrinsic and extrinsic) showed a strong linear correlation with gestational age in the red part of the visible spectral range. This trend can be attributed, among other things, to a decrease in collagen density and an increase in hydration of cervical connective tissue. Wide field depolarization imaging is a very promising tool for rapid and non-invasive analysis of cervical tissue in vivo to monitor the steady progression of pregnancy, providing the practitioner with useful information to improve the detection of preterm birth.
Collapse
Affiliation(s)
- Jean Rehbinder
- ICube, CNRS, Université de Strasbourg, 67412, Illkirch Cedex, France
| | - Jérémy Vizet
- LPICM, CNRS, Ecole polytechnique, IP Paris, 91128, Palaiseau, France
| | - Junha Park
- LPICM, CNRS, Ecole polytechnique, IP Paris, 91128, Palaiseau, France
| | | | | | - André Nazac
- Department of Gynaecology, Iris Sud Ixelles Hospital, 1050, Ixelles, Belgium
| | - Angelo Pierangelo
- LPICM, CNRS, Ecole polytechnique, IP Paris, 91128, Palaiseau, France.
| |
Collapse
|
7
|
Rodríguez-Núñez O, Schucht P, Hewer E, Novikova T, Pierangelo A. Polarimetric visualization of healthy brain fiber tracts under adverse conditions: ex vivo studies. BIOMEDICAL OPTICS EXPRESS 2021; 12:6674-6685. [PMID: 34745764 PMCID: PMC8548022 DOI: 10.1364/boe.439754] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 05/09/2023]
Abstract
We suggest using the wide-field imaging Mueller polarimetry to contrast optically anisotropic fiber tracts of healthy brain white matter for the detection of brain tumor borders during neurosurgery. Our prior studies demonstrate that this polarimetric imaging modality detects correctly the in-plane orientation of brain white matter fiber tracts of a flat formalin-fixed thick brain specimen in reflection geometry [IEEE Trans. Med. Imaging39, 4376 (2020)10.1109/TMI.2020.3018439]. Here we present the results of ex vivo polarimetric studies of large cross-sections of fresh calf brain in reflection geometry with a special focus on the impact of the adverse measurement conditions (e.g. complex surface topography, presence of blood, etc.) on the quality of polarimetric images and the detection performance of white matter fiber tracts and their in-plane orientation.
Collapse
Affiliation(s)
| | - Philippe Schucht
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Ekkehard Hewer
- Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Tatiana Novikova
- LPICM, CNRS, Ecole polytechnique, IP Paris, Palaiseau, 91128, France
| | - Angelo Pierangelo
- LPICM, CNRS, Ecole polytechnique, IP Paris, Palaiseau, 91128, France
| |
Collapse
|
8
|
Chashchina O, Mezouar H, Vizet J, Raoux C, Park J, Ramón-Lozano C, Schanne-Klein MC, Barakat AI, Pierangelo A. Mueller polarimetric imaging for fast macroscopic mapping of microscopic collagen matrix remodeling by smooth muscle cells. Sci Rep 2021; 11:5901. [PMID: 33723321 PMCID: PMC7960740 DOI: 10.1038/s41598-021-85164-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
Smooth muscle cells (SMCs) are critical players in cardiovascular disease development and undergo complex phenotype switching during disease progression. However, SMC phenotype is difficult to assess and track in co-culture studies. To determine the contractility of SMCs embedded within collagen hydrogels, we performed polarized light imaging and subsequent analysis based on Mueller matrices. Measurements were made both in the absence and presence of endothelial cells (ECs) in order to establish the impact of EC-SMC communication on SMC contractility. The results demonstrated that Mueller polarimetric imaging is indeed an appropriate tool for assessing SMC activity which significantly modifies the hydrogel retardance in the presence of ECs. These findings are consistent with the idea that EC-SMC communication promotes a more contractile SMC phenotype. More broadly, our findings suggest that Mueller polarimetry can be a useful tool for studies of spatial heterogeneities in hydrogel remodeling by SMCs.
Collapse
Affiliation(s)
- Olga Chashchina
- Hydrodynamics Laboratory (CNRS UMR7646), Ecole Polytechnique, IP Paris, Paris, France
| | - Hachem Mezouar
- LPICM (CNRS UMR 7647), Ecole Polytechnique, IP Paris, Paris, France
| | - Jérémy Vizet
- LPICM (CNRS UMR 7647), Ecole Polytechnique, IP Paris, Paris, France
| | - Clothilde Raoux
- LOB, CNRS, Inserm, Ecole Polytechnique, IP Paris, Paris, France
| | - Junha Park
- LPICM (CNRS UMR 7647), Ecole Polytechnique, IP Paris, Paris, France
| | - Clara Ramón-Lozano
- Hydrodynamics Laboratory (CNRS UMR7646), Ecole Polytechnique, IP Paris, Paris, France
| | | | - Abdul I Barakat
- Hydrodynamics Laboratory (CNRS UMR7646), Ecole Polytechnique, IP Paris, Paris, France
| | - Angelo Pierangelo
- LPICM (CNRS UMR 7647), Ecole Polytechnique, IP Paris, Paris, France.
| |
Collapse
|
9
|
Schucht P, Lee HR, Mezouar HM, Hewer E, Raabe A, Murek M, Zubak I, Goldberg J, Kovari E, Pierangelo A, Novikova T. Visualization of White Matter Fiber Tracts of Brain Tissue Sections With Wide-Field Imaging Mueller Polarimetry. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4376-4382. [PMID: 32822294 DOI: 10.1109/tmi.2020.3018439] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Identification of white matter fiber tracts of the brain is crucial for delineating the tumor border during neurosurgery. A custom-built Mueller polarimeter was used in reflection configuration for the wide-field imaging of thick sections of fixed human brain and fresh calf brain. The maps of the azimuth of the fast optical axis of linear birefringent medium reconstructed from the experimental Mueller matrix images of the specimen by applying a non-linear data compression algorithm showed a strong correlation with the silver-stained sample histology image, which is the gold standard for ex-vivo brain fiber tract visualization. The polarimetric maps of fresh calf brain tissue demonstrated the same trends in the depolarization, the scalar retardance and the azimuth of the fast optical axis as seen in fixed human brain tissue. Thus, label-free imaging Mueller polarimetry shows promise as an efficient intra-operative modality for the visualization of healthy brain white matter fiber tracts, which could improve the accuracy of tumor border detection and, ultimately, patient outcomes.
Collapse
|
10
|
Microstructural deformation observed by Mueller polarimetry during traction assay on myocardium samples. Sci Rep 2020; 10:20531. [PMID: 33239670 PMCID: PMC7688642 DOI: 10.1038/s41598-020-76820-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022] Open
Abstract
Despite recent advances, the myocardial microstructure remains imperfectly understood. In particular, bundles of cardiomyocytes have been observed but their three-dimensional organisation remains debated and the associated mechanical consequences unknown. One of the major challenges remains to perform multiscale observations of the mechanical response of the heart wall. For this purpose, in this study, a full-field Mueller polarimetric imager (MPI) was combined, for the first time, with an in-situ traction device. The full-field MPI enables to obtain a macroscopic image of the explored tissue, while providing detailed information about its structure on a microscopic scale. Specifically it exploits the polarization of the light to determine various biophysical quantities related to the tissue scattering or anisotropy properties. Combined with a mechanical traction device, the full-field MPI allows to measure the evolution of such biophysical quantities during tissue stretch. We observe separation lines on the tissue, which are associated with a fast variation of the fiber orientation, and have the size of cardiomyocyte bundles. Thus, we hypothesize that these lines are the perimysium, the collagen layer surrounding these bundles. During the mechanical traction, we observe two mechanisms simultaneously. On one hand, the azimuth shows an affine behavior, meaning the orientation changes according to the tissue deformation, and showing coherence in the tissue. On the other hand, the separation lines appear to be resistant in shear and compression but weak against traction, with a forming of gaps in the tissue.
Collapse
|