Hiroi Y, Watanabe A, Mikawa Y, Itoh Y. Low-Latency Beaming Display: Implementation of Wearable, 133 μs Motion-to-Photon Latency Near-Eye Display.
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023;
29:4761-4771. [PMID:
37788208 DOI:
10.1109/tvcg.2023.3320212]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
This paper presents a low-latency Beaming Display system with a 133 μs motion-to-photon (M2P) latency, the delay from head motion to the corresponding image motion. The Beaming Display represents a recent near-eye display paradigm that involves a steerable remote projector and a passive wearable headset. This system aims to overcome typical trade-offs of Optical See-Through Head-Mounted Displays (OST-HMDs), such as weight and computational resources. However, since the Beaming Display projects a small image onto a moving, distant viewpoint, M2P latency significantly affects displacement. To reduce M2P latency, we propose a low-latency Beaming Display system that can be modularized without relying on expensive high-speed devices. In our system, a 2D position sensor, which is placed coaxially on the projector, detects the light from the IR-LED on the headset and generates a differential signal for tracking. An analog closed-loop control of the steering mirror based on this signal continuously projects images onto the headset. We have implemented a proof-of-concept prototype, evaluated the latency and the augmented reality experience through a user-perspective camera, and discussed the limitations and potential improvements of the prototype.
Collapse