1
|
KCC2 drives chloride microdomain formation in dendritic blebbing. Cell Rep 2022; 41:111556. [DOI: 10.1016/j.celrep.2022.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/23/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
|
2
|
Elahi SF, Lee SY, Lloyd WR, Chen LC, Kuo S, Zhou Y, Kim HM, Kennedy R, Marcelo C, Feinberg SE, Mycek MA. Noninvasive Optical Assessment of Implanted Engineered Tissues Correlates with Cytokine Secretion. Tissue Eng Part C Methods 2018; 24:214-221. [PMID: 29448894 DOI: 10.1089/ten.tec.2017.0516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fluorescence lifetime sensing has been shown to noninvasively characterize the preimplantation health and viability of engineered tissue constructs. However, current practices to monitor postimplantation construct integration are either qualitative (visual assessment) or destructive (tissue histology). We employed label-free fluorescence lifetime spectroscopy for quantitative, noninvasive optical assessment of engineered tissue constructs that were implanted into a murine model. The portable system was designed to be suitable for intravital measurements and included a handheld probe to precisely and rapidly acquire data at multiple sites per construct. Our model tissue constructs were manufactured from primary human cells to simulate patient variability based on a standard protocol, and half of the manufactured constructs were stressed to create a range of health states. Secreted amounts of three cytokines that relate to cellular viability were measured in vitro to assess preimplantation construct health: interleukin-8 (IL-8), human β-defensin 1 (hBD-1), and vascular endothelial growth factor (VEGF). Preimplantation cytokine secretion ranged from 1.5 to 33.5 pg/mL for IL-8, from 3.4 to 195.0 pg/mL for hBD-1, and from 0.1 to 154.3 pg/mL for VEGF. In vivo optical sensing assessed constructs at 1 and 3 weeks postimplantation. We found that at 1 week postimplantation, in vivo optical parameters correlated with in vitro preimplantation secretion levels of all three cytokines (p < 0.05). This correlation was not observed in optical measurements at 3 weeks postimplantation when histology showed that the constructs had re-epithelialized, independent of preimplantation health state, supporting the lack of a correlation. These results suggest that clinical optical diagnostic tools based on label-free fluorescence lifetime sensing of endogenous tissue fluorophores could noninvasively monitor postimplantation integration of engineered tissues.
Collapse
Affiliation(s)
- Sakib F Elahi
- 1 Department of Biomedical Engineering, College of Engineering & Medical School, University of Michigan , Ann Arbor, Michigan
| | - Seung Yup Lee
- 1 Department of Biomedical Engineering, College of Engineering & Medical School, University of Michigan , Ann Arbor, Michigan
| | - William R Lloyd
- 1 Department of Biomedical Engineering, College of Engineering & Medical School, University of Michigan , Ann Arbor, Michigan
| | - Leng-Chun Chen
- 1 Department of Biomedical Engineering, College of Engineering & Medical School, University of Michigan , Ann Arbor, Michigan
| | - Shiuhyang Kuo
- 2 Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Michigan , Ann Arbor, Michigan.,3 Department of Surgery, Medical School, University of Michigan , Ann Arbor, Michigan
| | - Ying Zhou
- 4 Department of Chemistry, College of Literature, Science, and the Arts, University of Michigan , Ann Arbor, Michigan
| | - Hyungjin Myra Kim
- 5 Center for Statistical Consultation and Research, University of Michigan , Ann Arbor, Michigan
| | - Robert Kennedy
- 4 Department of Chemistry, College of Literature, Science, and the Arts, University of Michigan , Ann Arbor, Michigan
| | - Cynthia Marcelo
- 3 Department of Surgery, Medical School, University of Michigan , Ann Arbor, Michigan
| | - Stephen E Feinberg
- 2 Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Michigan , Ann Arbor, Michigan
| | - Mary-Ann Mycek
- 1 Department of Biomedical Engineering, College of Engineering & Medical School, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
3
|
De Los Santos C, Chang CW, Mycek MA, Cardullo RA. FRAP, FLIM, and FRET: Detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy. Mol Reprod Dev 2015; 82:587-604. [PMID: 26010322 PMCID: PMC4515154 DOI: 10.1002/mrd.22501] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/01/2015] [Indexed: 01/01/2023]
Abstract
The combination of fluorescent-probe technology plus modern optical microscopes allows investigators to monitor dynamic events in living cells with exquisite temporal and spatial resolution. Fluorescence recovery after photobleaching (FRAP), for example, has long been used to monitor molecular dynamics both within cells and on cellular surfaces. Although bound by the diffraction limit imposed on all optical microscopes, the combination of digital cameras and the application of fluorescence intensity information on large-pixel arrays have allowed such dynamic information to be monitored and quantified. Fluorescence lifetime imaging microscopy (FLIM), on the other hand, utilizes the information from an ensemble of fluorophores to probe changes in the local environment. Using either fluorescence-intensity or lifetime approaches, fluorescence resonance energy transfer (FRET) microscopy provides information about molecular interactions, with Ångstrom resolution. In this review, we summarize the theoretical framework underlying these methods and illustrate their utility in addressing important problems in reproductive and developmental systems.
Collapse
Affiliation(s)
- Carla De Los Santos
- Departments of Biology and Bioengineering, University of California, Riverside, Riverside, CA 92501
| | - Ching-Wei Chang
- Department of Bioengineering, University of California, Berkeley 94720
| | - Mary-Ann Mycek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Richard A. Cardullo
- Departments of Biology and Bioengineering, University of California, Riverside, Riverside, CA 92501
| |
Collapse
|
4
|
Yankelevich DR, Ma D, Liu J, Sun Y, Sun Y, Bec J, Elson DS, Marcu L. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:034303. [PMID: 24689603 PMCID: PMC3971822 DOI: 10.1063/1.4869037] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8-7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence lifetime measurements of low quantum efficiency sub-nanosecond fluorophores.
Collapse
Affiliation(s)
- Diego R Yankelevich
- Department of Electrical and Computer Engineering, University of California, 3101 Kemper Hall, Davis, California 95616, USA
| | - Dinglong Ma
- Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, California 95616, USA
| | - Jing Liu
- Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, California 95616, USA
| | - Yang Sun
- Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, California 95616, USA
| | - Yinghua Sun
- Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, California 95616, USA
| | - Julien Bec
- Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, California 95616, USA
| | - Daniel S Elson
- Hamlyn Centre for Robotic Surgery, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Laura Marcu
- Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, California 95616, USA
| |
Collapse
|
5
|
Chen LC, Lloyd WR, Chang CW, Sud D, Mycek MA. Fluorescence lifetime imaging microscopy for quantitative biological imaging. Methods Cell Biol 2013; 114:457-88. [PMID: 23931519 DOI: 10.1016/b978-0-12-407761-4.00020-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a method for measuring fluorophore lifetimes with microscopic spatial resolution, providing a useful tool for cell biologists to detect, visualize, and investigate structure and function of biological systems. In this chapter, we begin by introducing the basic theory of fluorescence lifetime, including the characteristics of fluorophore decay, followed by a discussion of factors affecting fluorescence lifetimes and the potential advantages of fluorescence lifetime as a source of image contrast. Experimental methods for creating lifetime maps, including both time- and frequency-domain experimental approaches, are then introduced. Then, FLIM data analysis methods are discussed, including rapid lifetime determination, multiexponential fitting, Laguerre polynomial fitting, and phasor plot analysis. After, data analysis methods are introduced that improve lifetime precision of FLIM maps based upon optimal virtual gating and total variation denoising. The chapter concludes by highlighting several recent FLIM applications for quantitative biological imaging, including Förster resonance energy transfer-FLIM, fluorescence correlation spectroscopy-FLIM, multispectral-FLIM, and multiphoton-FLIM.
Collapse
Affiliation(s)
- Leng-Chun Chen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
6
|
Wilson RH, Mycek MA. Models of light propagation in human tissue applied to cancer diagnostics. Technol Cancer Res Treat 2011; 10:121-34. [PMID: 21381790 DOI: 10.7785/tcrt.2012.500187] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Optical methods such as reflectance and fluorescence spectroscopy are being investigated for their potential to aid cancer detection in a quantitative, minimally invasive manner. Mathematical models of reflectance and fluorescence provide an important link between measured optical data and biomedically-relevant tissue parameters that can be extracted from these data to characterize the presence or absence of disease. The most commonly-used mathematical models in biomedical optics are the diffusion approximation (DA) to the radiative transfer equation, Monte Carlo (MC) computational models of light transport, and semi-empirical models. This paper presents a review of the applications of these models to reflectance and endogenous fluorescence sensing for cancer diagnostics in human tissues. Specific examples are given for cervical, breast, and pancreatic tissues. A comparison of the DA and MC methods in two biologically-relevant regimes of optical parameter space will also be discussed.
Collapse
Affiliation(s)
- R H Wilson
- Applied Physics Program, University of Michigan, Ann Arbor, MI 48109-1040, USA
| | | |
Collapse
|