1
|
Piscopo L, Collard L, Pisano F, Balena A, Vittorio MD, Pisanello F. Advantages of internal reference in holographic shaping ps supercontinuum pulses through multimode optical fibers. OPTICS EXPRESS 2024; 32:24144-24155. [PMID: 39538862 PMCID: PMC11595516 DOI: 10.1364/oe.528043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 11/16/2024]
Abstract
The use of wavefront shaping has found extensive application to develop ultra-thin endoscopic techniques based on multimode optical fibers (MMF), leveraging on the ability to control modal interference at the fiber's distal end. Although several techniques have been developed to achieve MMF-based laser-scanning imaging, the use of short laser pulses is still a challenging application. This is due to the intrinsic delay and temporal broadening introduced by the fiber itself, which requires additional compensation optics on the reference beam during the calibration procedure. Here we combine the use of a supercontinuum laser and an internal reference-based wavefront shaping system to produce focused spot scanning in multiple planes at the output of a step-index multimode fiber, without the requirement of a delay line or pulse pre-compensation. We benchmarked the performances of internal vs external reference during calibration, finding that the use of an internal reference grants better focusing efficiency. The system was characterized at different wavelengths, showcasing the wavelength resiliency of the different parameters. Lastly, the scanning of focal planes beyond the fiber facet was achieved by exploiting the chromato-axial memory effect.
Collapse
Affiliation(s)
- Linda Piscopo
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- Dipartimento di Ingegneria Dell’Innovazione, Università del Salento, Lecce 73100, Italy
| | - Liam Collard
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- RAISE Ecosystem, Genova, Italy
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Via Marzolo 8, 35131, Padova, Italy
| | - Antonio Balena
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- Laboratoire Kastler Brossel, Sorbonne University, CNRS, ENS-PSL University, Collège de France, Paris, 75005, France
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- Dipartimento di Ingegneria Dell’Innovazione, Università del Salento, Lecce 73100, Italy
- RAISE Ecosystem, Genova, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, LE 73010, Italy
- RAISE Ecosystem, Genova, Italy
| |
Collapse
|
2
|
Chmykh Y, Nadeau JL. The use of fluorescence lifetime imaging (FLIM) for in situ microbial detection in complex mineral substrates. J Microsc 2024; 294:36-51. [PMID: 38230460 DOI: 10.1111/jmi.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/16/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
The utility of fluorescence lifetime imaging microscopy (FLIM) for identifying bacteria in complex mineral matrices was investigated. Baseline signals from unlabelled Bacillus subtilis and Euglena gracilis, and Bacillus subtilis labelled with SYTO 9 were obtained using two-photon excitation at 730, 750 and 800 nm, identifying characteristic lifetimes of photosynthetic pigments, unpigmented cellular autofluorescence, and SYTO 9. Labelled and unlabelled B. subtilis were seeded onto marble and gypsum samples containing endolithic photosynthetic cyanobacteria and the ability to distinguish cells from mineral autofluorescence and nonspecific dye staining was examined in parallel with ordinary multichannel confocal imaging. It was found that FLIM enabled discrimination of SYTO 9 labelled cells from background, but that the lifetime of SYTO 9 was shorter in cells on minerals than in pure culture under our conditions. Photosynthetic microorganisms were easily observed using both FLIM and confocal. Unlabelled, nonpigmented bacteria showed weak signals that were difficult to distinguish from background when minerals were present, though cellular autofluorescence consistent with NAD(P)H could be seen in pure cultures, and phasor analysis permitted detection on rocks. Gypsum and marble samples showed similar autofluorescence profiles, with little autofluorescence in the yellow-to-red range. Lifetime or time-gated imaging may prove a useful tool for environmental microbiology. LAY DESCRIPTION: The standard method of bacterial enumeration is to label the cells with a fluorescent dye and count them under high-power fluorescence microscopy. However, this can be difficult when the cells are embedded in soil and rock due to fluorescence from the surrounding minerals and dye binding to ambiguous features of the substrate. The use of fluorescence lifetime imaging (FLIM) can disambiguate these signals and allow for improved detection of bacteria in environmental samples.
Collapse
Affiliation(s)
- Yekaterina Chmykh
- Department of Physics, Portland State University, Portland, Oregon, USA
| | - Jay L Nadeau
- Department of Physics, Portland State University, Portland, Oregon, USA
| |
Collapse
|
3
|
Matheson AB, Erdogan AT, Hopkinson C, Borrowman S, Loake GJ, Tanner MG, Henderson RK. Handheld wide-field fluorescence lifetime imaging system based on a distally mounted SPAD array. OPTICS EXPRESS 2023; 31:22766-22775. [PMID: 37475380 DOI: 10.1364/oe.482273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/24/2023] [Indexed: 07/22/2023]
Abstract
In this work a handheld Fluorescent Lifetime IMaging (FLIM) system based on a distally mounted < 2 mm2 128 × 120 single photon avalanche diode (SPAD) array operating over a > 1 m long wired interface is demonstrated. The head of the system is ∼4.5 cm x 4.5 cm x 4.5 cm making it suitable for hand-held ex vivo applications. This is, to the best of the authors' knowledge, the first example of a SPAD array mounted on the distal end of a handheld FLIM system in this manner. All existing systems to date use a fibre to collect and relay fluorescent light to detectors at the proximal end of the system. This has clear potential biological and biomedical applications. To demonstrate this, the system is used to provide contrast between regions of differing tissue composition in ovine kidney samples, and between healthy and stressed or damaged plant leaves. Additionally, FLIM videos are provided showing that frame rates of > 1 Hz are achievable. It is thus an important step in realising an in vivo miniaturized chip-on-tip FLIM endoscopy system.
Collapse
|
4
|
Williams GOS, Williams E, Finlayson N, Erdogan AT, Wang Q, Fernandes S, Akram AR, Dhaliwal K, Henderson RK, Girkin JM, Bradley M. Full spectrum fluorescence lifetime imaging with 0.5 nm spectral and 50 ps temporal resolution. Nat Commun 2021; 12:6616. [PMID: 34785666 PMCID: PMC8595732 DOI: 10.1038/s41467-021-26837-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 10/15/2021] [Indexed: 11/23/2022] Open
Abstract
The use of optical techniques to interrogate wide ranging samples from semiconductors to biological tissue for rapid analysis and diagnostics has gained wide adoption over the past decades. The desire to collect ever more spatially, spectrally and temporally detailed optical signatures for sample characterization has specifically driven a sharp rise in new optical microscopy technologies. Here we present a high-speed optical scanning microscope capable of capturing time resolved images across 512 spectral and 32 time channels in a single acquisition with the potential for ~0.2 frames per second (256 × 256 image pixels). Each pixel in the resulting images contains a detailed data cube for the study of diverse time resolved light driven phenomena. This is enabled by integration of system control electronics and on-chip processing which overcomes the challenges presented by high data volume and low imaging speed, often bottlenecks in previous systems. High data volumes from multidimensional imaging techniques can lead to slow collection and processing times. Here, the authors implement multispectral fluorescence lifetime imaging microscopy (FLIM) that uses time-correlated photon counting technology to reach simultaneously high imaging rates combined with high spectral and temporal resolution.
Collapse
Affiliation(s)
- Gareth O S Williams
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Elvira Williams
- Centre for Advanced Instrumentation, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - Neil Finlayson
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Ahmet T Erdogan
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Qiang Wang
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Susan Fernandes
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Ahsan R Akram
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Kev Dhaliwal
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Robert K Henderson
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - John M Girkin
- Centre for Advanced Instrumentation, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Mark Bradley
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
5
|
Sapermsap N, Li DDU, Al-Hemedawi R, Li Y, Yu J, Birch DJS, Chen Y. A rapid analysis platform for investigating the cellular locations of bacteria using two-photon fluorescence lifetime imaging microscopy. Methods Appl Fluoresc 2020; 8:034001. [DOI: 10.1088/2050-6120/ab854e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Lesur O, Chagnon F, Lebel R, Lepage M. In Vivo Endomicroscopy of Lung Injury and Repair in ARDS: Potential Added Value to Current Imaging. J Clin Med 2019; 8:jcm8081197. [PMID: 31405200 PMCID: PMC6723156 DOI: 10.3390/jcm8081197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Standard clinical imaging of the acute respiratory distress syndrome (ARDS) lung lacks resolution and offers limited possibilities in the exploration of the structure-function relationship, and therefore cannot provide an early and clear discrimination of patients with unexpected diagnosis and unrepair profile. The current gold standard is open lung biopsy (OLB). However, despite being able to reveal precise information about the tissue collected, OLB cannot provide real-time information on treatment response and is accompanied with a complication risk rate up to 25%, making longitudinal monitoring a dangerous endeavor. Intravital probe-based confocal laser endomicroscopy (pCLE) is a developing and innovative high-resolution imaging technology. pCLE offers the possibility to leverage multiple and specific imaging probes to enable multiplex screening of several proteases and pathogenic microorganisms, simultaneously and longitudinally, in the lung. This bedside method will ultimately enable physicians to rapidly, noninvasively, and accurately diagnose degrading lung and/or fibrosis without the need of OLBs. OBJECTIVES AND METHODS To extend the information provided by standard imaging of the ARDS lung with a bedside, high-resolution, miniaturized pCLE through the detailed molecular imaging of a carefully selected region-of-interest (ROI). To validate and quantify real-time imaging to validate pCLE against OLB. RESULTS Developments in lung pCLE using fluorescent affinity- or activity-based probes at both preclinical and clinical (first-in-man) stages are ongoing-the results are promising, revealing correlations with OLBs in problematic ARDS. CONCLUSION It can be envisaged that safe, high-resolution, noninvasive pCLE with activatable fluorescence probes will provide a "virtual optical biopsy" and will provide decisive information in selected ARDS patients at the bedside.
Collapse
Affiliation(s)
- Olivier Lesur
- Intensive Care and Pneumology Departments, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
- Sherbrooke Molecular Imaging Center (CIMS), Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Frédéric Chagnon
- Intensive Care and Pneumology Departments, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Réjean Lebel
- Sherbrooke Molecular Imaging Center (CIMS), Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Nuclear Medicine and Radiobiology Departments, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Martin Lepage
- Sherbrooke Molecular Imaging Center (CIMS), Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Nuclear Medicine and Radiobiology Departments, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
7
|
Alfonso-Garcia A, Li C, Bec J, Yankelevich D, Marcu L, Sherlock B. Fiber-based platform for synchronous imaging of endogenous and exogenous fluorescence of biological tissue. OPTICS LETTERS 2019; 44:3350-3353. [PMID: 31259958 PMCID: PMC7539616 DOI: 10.1364/ol.44.003350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/01/2019] [Indexed: 05/29/2023]
Abstract
Endogenous and exogenous fluorescence emission from biological samples encodes complementary information. Here we report, to the best of our knowledge, the first results from an optical imaging platform with interleaved excitation and detection of exogenous and endogenous fluorescence from tissue samples using a single flexible multimode fiber that delivers the excitation beam and collects the emitted light. A custom-built reflective optical chopper wheel with synchronized rotation temporally multiplexes an autofluorescence lifetime imaging apparatus with an intensity-based fluorescence module tailored to imaging green fluorescent protein. We demonstrate the functionality of such platform imaging dyes of varying fluorescence signatures and resolving cellularized areas on bio-engineered tissue constructs.
Collapse
Affiliation(s)
- Alba Alfonso-Garcia
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Dr., Davis, California 95616, USA
| | - Cai Li
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Dr., Davis, California 95616, USA
| | - Julien Bec
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Dr., Davis, California 95616, USA
| | - Diego Yankelevich
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Dr., Davis, California 95616, USA
- Department of Electrical and Computer Engineering, University of California, Davis, One Shields Avenue, Kemper Hall, Davis, California 95616, USA
| | - Laura Marcu
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Dr., Davis, California 95616, USA
| | - Ben Sherlock
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Dr., Davis, California 95616, USA
| |
Collapse
|
8
|
Parker HE, Stone JM, Marshall ADL, Choudhary TR, Thomson RR, Dhaliwal K, Tanner MG. Fibre-based spectral ratio endomicroscopy for contrast enhancement of bacterial imaging and pulmonary autofluorescence. BIOMEDICAL OPTICS EXPRESS 2019; 10:1856-1869. [PMID: 31086708 PMCID: PMC6485003 DOI: 10.1364/boe.10.001856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 06/01/2023]
Abstract
Fibre-based optical endomicroscopy (OEM) permits high resolution fluorescence microscopy in endoscopically accessible tissues. Fibred OEM has the potential to visualise pathologies targeted with fluorescent imaging probes and provide an in vivo in situ molecular pathology platform to augment disease understanding, diagnosis and stratification. Here we present an inexpensive widefield ratiometric fibred OEM system capable of enhancing the contrast between similar spectra of pathologically relevant fluorescent signals without the burden of complex spectral unmixing. As an exemplar, we demonstrate the potential of the platform to detect fluorescently labelled Gram-negative bacteria in the challenging environment of highly autofluorescent lung tissue in whole ex vivo human lungs.
Collapse
Affiliation(s)
- Helen E. Parker
- EPSRC Proteus IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - James M. Stone
- EPSRC Proteus IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, Bath, UK
| | - Adam D. L. Marshall
- EPSRC Proteus IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Tushar R. Choudhary
- EPSRC Proteus IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Robert R. Thomson
- EPSRC Proteus IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Kevin Dhaliwal
- EPSRC Proteus IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Michael G. Tanner
- EPSRC Proteus IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|