1
|
Gaafar MA, Ludwig M, Wang K, Wildi T, Voumard T, Sinobad M, Lorenzen J, Francis H, Carreira J, Zhang S, Bi T, Del'Haye P, Geiselmann M, Singh N, Kärtner FX, Garcia-Blanco SM, Herr T. Femtosecond pulse amplification on a chip. Nat Commun 2024; 15:8109. [PMID: 39285172 PMCID: PMC11405508 DOI: 10.1038/s41467-024-52057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Femtosecond laser pulses enable the synthesis of light across the electromagnetic spectrum and provide access to ultrafast phenomena in physics, biology, and chemistry. Chip-integration of femtosecond technology could revolutionize applications such as point-of-care diagnostics, bio-medical imaging, portable chemical sensing, or autonomous navigation. However, current chip-integrated pulse sources lack the required peak power, and on-chip amplification of femtosecond pulses has been an unresolved challenge. Here, addressing this challenge, we report >50-fold amplification of 1 GHz-repetition-rate chirped femtosecond pulses in a CMOS-compatible photonic chip to 800 W peak power with 116 fs pulse duration. This power level is 2-3 orders of magnitude higher compared to those in previously demonstrated on-chip pulse sources and can provide the power needed to address key applications. To achieve this, detrimental nonlinear effects are mitigated through all-normal dispersion, large mode-area and rare-earth-doped gain waveguides. These results offer a pathway to chip-integrated femtosecond technology with peak power levels characteristic of table-top sources.
Collapse
Affiliation(s)
- Mahmoud A Gaafar
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Markus Ludwig
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Kai Wang
- Integrated Optical Systems, MESA+ Institute for Nanotechnology, University of Twente, 7500AE, Enschede, The Netherlands
| | - Thibault Wildi
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Thibault Voumard
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Milan Sinobad
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Jan Lorenzen
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Henry Francis
- LIGENTEC SA, EPFL Innovation Park, Chemin de la Dent-d'Oche 1B, Switzerland, CH-1024, Ecublens, Switzerland
| | - Jose Carreira
- LIGENTEC SA, EPFL Innovation Park, Chemin de la Dent-d'Oche 1B, Switzerland, CH-1024, Ecublens, Switzerland
| | - Shuangyou Zhang
- Max-Planck Institute for the Science of Light, 91058, Erlangen, Staudtstr. 2, Germany
| | - Toby Bi
- Max-Planck Institute for the Science of Light, 91058, Erlangen, Staudtstr. 2, Germany
- Department of Physics, FAU Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Pascal Del'Haye
- Max-Planck Institute for the Science of Light, 91058, Erlangen, Staudtstr. 2, Germany
- Department of Physics, FAU Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Michael Geiselmann
- LIGENTEC SA, EPFL Innovation Park, Chemin de la Dent-d'Oche 1B, Switzerland, CH-1024, Ecublens, Switzerland
| | - Neetesh Singh
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Franz X Kärtner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Sonia M Garcia-Blanco
- Integrated Optical Systems, MESA+ Institute for Nanotechnology, University of Twente, 7500AE, Enschede, The Netherlands
| | - Tobias Herr
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| |
Collapse
|
2
|
Krylov A, Senatorov A, Gladyshev A, Yatsenko Y, Kosolapov A, Kolyadin A, Khudyakov M, Likhachev M, Bufetov I. 10-µJ-level femtosecond pulse generation in the erbium CPA fiber source with microstructured hollow-core fiber assisted delivery and nonlinear frequency conversion. APPLIED OPTICS 2023; 62:5745-5754. [PMID: 37707192 DOI: 10.1364/ao.494799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/24/2023] [Indexed: 09/15/2023]
Abstract
We report on the development of a chirped pulse amplification (CPA) designed erbium fiber source with a hybrid high-power amplifier, which is composed of erbium-doped and erbium/ytterbium-co-doped double-clad large-mode-area fibers. Stretched pulses from the high-power amplifier with up to 21.9 µJ energy and 198.5 kHz repetition rate are dechirped in the transmission grating pair-based compressor with 73% efficiency, yielding as short as 742 fs duration with 15.8 µJ energy and ≈13M W peak power (maximum average power up to 3.14 W) at the central wavelength of 1.56 µm. Compressed pulses are coupled into microstructured negative-curvature hollow-core fibers with a single row capillary cladding and different core sizes of 34 µm and 75 µm in order to realize femtosecond pulse delivery with a diffraction-limited output beam (M 2≤1.09) and demonstrate ∼200n J Stokes pulse generation at 1712 nm via rotational SRS in pressurized hydrogen (H 2). We believe that the developed system may be a prospect for high-precision material processing and other high-energy and high-peak-power laser applications.
Collapse
|
3
|
Batista A, Guimarães P, Domingues JP, Quadrado MJ, Morgado AM. Two-Photon Imaging for Non-Invasive Corneal Examination. SENSORS (BASEL, SWITZERLAND) 2022; 22:9699. [PMID: 36560071 PMCID: PMC9783858 DOI: 10.3390/s22249699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Two-photon imaging (TPI) microscopy, namely, two-photon excited fluorescence (TPEF), fluorescence lifetime imaging (FLIM), and second-harmonic generation (SHG) modalities, has emerged in the past years as a powerful tool for the examination of biological tissues. These modalities rely on different contrast mechanisms and are often used simultaneously to provide complementary information on morphology, metabolism, and structural properties of the imaged tissue. The cornea, being a transparent tissue, rich in collagen and with several cellular layers, is well-suited to be imaged by TPI microscopy. In this review, we discuss the physical principles behind TPI as well as its instrumentation. We also provide an overview of the current advances in TPI instrumentation and image analysis. We describe how TPI can be leveraged to retrieve unique information on the cornea and to complement the information provided by current clinical devices. The present state of corneal TPI is outlined. Finally, we discuss the obstacles that must be overcome and offer perspectives and outlooks to make clinical TPI of the human cornea a reality.
Collapse
Affiliation(s)
- Ana Batista
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Physics, Faculty of Science and Technology, University of Coimbra, 3004-516 Coimbra, Portugal
| | - Pedro Guimarães
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - José Paulo Domingues
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Physics, Faculty of Science and Technology, University of Coimbra, 3004-516 Coimbra, Portugal
| | - Maria João Quadrado
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - António Miguel Morgado
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Physics, Faculty of Science and Technology, University of Coimbra, 3004-516 Coimbra, Portugal
| |
Collapse
|
4
|
Chou LT, Wu SH, Hung HH, Lin WZ, Chen ZP, Ivanov AA, Chia SH. Compact multicolor two-photon fluorescence microscopy enabled by tailorable continuum generation from self-phase modulation and dispersive wave generation. OPTICS EXPRESS 2022; 30:40315-40327. [PMID: 36298966 DOI: 10.1364/oe.470602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
By precisely managing fiber-optic nonlinearity with anomalous dispersion, we have demonstrated the control of generating plural few-optical-cycle pulses based on a 24-MHz Chromium:forsterite laser, allowing multicolor two-photon tissue imaging by wavelength mixing. The formation of high-order soliton and its efficient coupling to dispersive wave generation leads to phase-matched spectral broadening, and we have obtained a broadband continuum ranging from 830 nm to 1200 nm, delivering 5-nJ pulses with a pulse width of 10.5 fs using a piece of large-mode-area fiber. We locate the spectral enhancement at around 920 nm for the two-photon excitation of green fluorophores, and we can easily compress the resulting pulse close to its limited duration without the need for active pulse shaping. To optimize the wavelength mixing for sum-frequency excitation, we have realized the management of the power ratio and group delay between the soliton and dispersive wave by varying the initial pulse energy without additional delay control. We have thus demonstrated simultaneous three-color two-photon tissue imaging with contrast management between different signals. Our source optimization leads to efficient two-photon excitation reaching a 500-µm imaging depth under a low 14-mW illumination power. We believe our source development leads to an efficient and compact approach for driving multicolor two-photon fluorescence microscopy and other ultrafast investigations, such as strong-field-driven applications.
Collapse
|
5
|
Diao X, Chen R, Chang G. Particle swarm optimization of SPM-enabled spectral selection to achieve an octave-spanning wavelength-shift. OPTICS EXPRESS 2021; 29:39766-39776. [PMID: 34809333 DOI: 10.1364/oe.442348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
SPM-enabled spectral selection (SESS) constitutes a powerful fiber-optic technique to generate wavelength broadly tunable femtosecond pulses. In the current demonstration, the maximum tuning range is 400 nm and the energy conversion efficiency from the pump source to the outmost spectral lobes is ∼25%. In this submission, we apply the particle swarm optimization method to the generalized nonlinear Schrödinger equation to identify the optimal parameters that maximize both the tuning range and the conversion efficiency. We show that SESS in an optical fiber with the optimized dispersion can deliver SESS pulses tunable in one octave wavelength range and the conversion efficiency can be as high as 80%. We further show the feasibility of experimental implementation based on specially designed fibers or on-chip waveguides.
Collapse
|
6
|
Wang K, Pan Y, Tong S, Chen X, Lu Y, Qiu P. Deep-skin multiphoton microscopy in vivo excited at 1600 nm: A comparative investigation with silicone oil and deuterium dioxide immersion. JOURNAL OF BIOPHOTONICS 2021; 14:e202100076. [PMID: 34160142 DOI: 10.1002/jbio.202100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Multiphoton microscopy (MPM) excited at the 1700-nm window has enabled deep-tissue penetration in biological tissue, especially brain. MPM of skin may also benefit from this deep-penetration capability. Skin is a layered structure with varying refractive index (from 1.34 to 1.5). Consequently, proper immersion medium should be selected when imaging with high numerical aperture objective lens. To provide guidelines for immersion medium selection for skin MPM, here we demonstrate comparative experimental investigation of deep-skin MPM excited at 1600 nm in vivo, using both silicone oil and deuterium dioxide (D2 O) immersion. We specifically characterize imaging depths, signal levels and spatial resolution. Our results show that both immersion media give similar performance in imaging depth and spatial resolution, while signal levels are slightly better with silicone oil immersion. We also demonstrate that local injection of fluorescent beads into the skin is a viable technique for spatial resolution characterization in vivo.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yi Pan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Shen Tong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Xinlin Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yuan Lu
- Department of Dermatology, The sixth Hospital of Shenzhen University (Nanshan Hospital), Shenzhen, China
| | - Ping Qiu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Wang K, Pan Y, Tong S, Liang H, Qiu P. Deep-skin multiphoton microscopy of lymphatic vessels excited at the 1700-nm window in vivo. BIOMEDICAL OPTICS EXPRESS 2021; 12:6474-6484. [PMID: 34745750 PMCID: PMC8548020 DOI: 10.1364/boe.437482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Visualization of lymphatic vessels is key to the understanding of their structure, function, and dynamics. Multiphoton microscopy (MPM) is a potential technology for imaging lymphatic vessels, but tissue scattering prevents its deep penetration in skin. Here we demonstrate deep-skin MPM of the lymphatic vessels in mouse hindlimb in vivo, excited at the 1700 nm window. Our results show that with contrast provided by indocyanine green (ICG), 2-photon fluorescence (2PF) imaging enables noninvasive imaging of lymphatic vessels 300 μm below the skin surface, visualizing both its structure and contraction dynamics. Simultaneously acquired second-harmonic generation (SHG) and third-harmonic generation (THG) images visualize the local environment in which the lymphatic vessels reside. After removing the surface skin layer, 2PF and THG imaging visualize finer structures of the lymphatic vessels: most notably, the label-free THG imaging visualizes lymphatic valves and their open-and-close dynamics in real time. MPM excited at the 1700-nm window thus provides a promising technology for the study of lymphatic vessels.
Collapse
|
8
|
Hsiao YT, Huang YF, Borah BJ, Chen SK, Sun CK. Single-laser-based simultaneous four-wavelength excitation source for femtosecond two-photon fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:4661-4679. [PMID: 34513216 PMCID: PMC8407803 DOI: 10.1364/boe.428771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Multicolor labeling of biological samples with large volume is required for omic-level of study such as the construction of nervous system connectome. Among the various imaging method, two photon microscope has multiple advantages over traditional single photon microscope for higher resolution and could image large 3D volumes of tissue samples with superior imaging depth. However, the growing number of fluorophores for labeling underlines the urgent need for an ultrafast laser source with the capability of providing simultaneous plural excitation wavelengths for multiple fluorophores. Here, we propose and demonstrate a single-laser-based four-wavelength excitation source for two-photon fluorescence microscopy. Using a sub-100 fs 1,070-nm Yb:fiber laser to pump an ultrashort nonlinear photonic crystal fiber in the low negative dispersion region, we introduced efficient self-phase modulation and acquired a blue-shifted spectrum dual-peaked at 812 and 960 nm with 28.5% wavelength conversion efficiency. By compressing the blue-shift near-IR spectrum to 33 fs to ensure the temporal overlap of the 812 and 960 nm peaks, the so-called sum frequency effect created the third virtual excitation wavelength effectively at 886 nm. Combined with the 1,070 nm laser source as the fourth excitation wavelength, the all-fiber-format four-wavelength excitation source enabled simultaneous four-color two-photon imaging in Brainbow AAV-labeled (TagBFP, mTFP, EYFP, and mCherry) brain samples. With an increased number of excitation wavelengths and improved excitation efficiency than typical commercial femtosecond lasers, our compact four-wavelength excitation approach can provide a versatile, efficient, and easily accessible solution for multiple-color two-photon fluorescence imaging in the field of neuroscience, biomolecular probing, and clinical applications with at least four spectrally-distinct fluorophores.
Collapse
Affiliation(s)
- Yang-Ting Hsiao
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Fan Huang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Bhaskar Jyoti Borah
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Kuo Chen
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Chou LT, Liu YC, Zhong DL, Lin WZ, Hung HH, Chan CJ, Chen ZP, Chia SH. Low noise, self-phase-modulation-enabled femtosecond fiber sources tunable in 740-1236 nm for wide two-photon fluorescence microscopy applications. BIOMEDICAL OPTICS EXPRESS 2021; 12:2888-2901. [PMID: 34168906 PMCID: PMC8194626 DOI: 10.1364/boe.422668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 05/13/2023]
Abstract
We have demonstrated widely tunable Yb:fiber-based laser sources, aiming to replace Ti:sapphire lasers for the nJ-level ultrafast applications, especially for the uses of nonlinear light microscopy. We investigated the influence of different input parameters to obtain an expansive spectral broadening, enabled by self-phase modulation and further reshaped by self-steepening, in the normal dispersion regime before the fiber damage. We also discussed the compressibility and intensity fluctuations of the demonstrated pulses, to reach the transform-limited duration with a very low intensity noise. Most importantly, we have demonstrated clear two-photon fluorescence images from UV-absorbing fluorophores to deep red dye stains.
Collapse
Affiliation(s)
- Lu-Ting Chou
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Yu-Cheng Liu
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Dong-Lin Zhong
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Wei-Zhong Lin
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Hao-Hsuan Hung
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Chao-Jin Chan
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Zi-Ping Chen
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Shih-Hsuan Chia
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| |
Collapse
|
10
|
Cheng QD, Chung HY, Schubert R, Chia SH, Falke S, Mudogo CN, Kärtner FX, Chang G, Betzel C. Protein-crystal detection with a compact multimodal multiphoton microscope. Commun Biol 2020; 3:569. [PMID: 33051587 PMCID: PMC7553921 DOI: 10.1038/s42003-020-01275-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/01/2020] [Indexed: 11/28/2022] Open
Abstract
There is an increasing demand for rapid, effective methods to identify and detect protein micro- and nano-crystal suspensions for serial diffraction data collection at X-ray free-electron lasers or high-intensity micro-focus synchrotron radiation sources. Here, we demonstrate a compact multimodal, multiphoton microscope, driven by a fiber-based ultrafast laser, enabling excitation wavelengths at 775 nm and 1300 nm for nonlinear optical imaging, which simultaneously records second-harmonic generation, third-harmonic generation and three-photon excited ultraviolet fluorescence to identify and detect protein crystals with high sensitivity. The instrument serves as a valuable and important tool supporting sample scoring and sample optimization in biomolecular crystallography, which we hope will increase the capabilities and productivity of serial diffraction data collection in the future.
Collapse
Affiliation(s)
- Qing-di Cheng
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a Notkestrasse 85, 22607, Hamburg, Germany
| | - Hsiang-Yu Chung
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Physics Department, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Robin Schubert
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a Notkestrasse 85, 22607, Hamburg, Germany
- XFEL Biological Infrastructure Laboratory at the European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Shih-Hsuan Chia
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Physics Department, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a Notkestrasse 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Celestin Nzanzu Mudogo
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a Notkestrasse 85, 22607, Hamburg, Germany
| | - Franz X Kärtner
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany.
- Physics Department, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| | - Guoqing Chang
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany.
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a Notkestrasse 85, 22607, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| |
Collapse
|
11
|
Hua Y, Zhou G, Liu W, Xin M, Kärtner FX, Chang G. Femtosecond two-color source synchronized at 100-as-precision based on SPM-enabled spectral selection. OPTICS LETTERS 2020; 45:3410-3413. [PMID: 32630858 DOI: 10.1364/ol.391161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate both numerically and experimentally that self-phase modulation-enabled spectral selection generates wavelength tunable energetic pulses that are tightly synchronized to the excitation pulses. The synchronization quantified by relative timing jitter is at the 100-as precision level, at least 10 times lower than can be achieved by Raman soliton pulses derived from the same source laser. This ultrafast two-color source is suitable for many important applications that require tight pulse synchronization.
Collapse
|
12
|
Cai S, Tian Y, Lui H, Zeng H, Wu Y, Chen G. Dense-UNet: a novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network. Quant Imaging Med Surg 2020; 10:1275-1285. [PMID: 32550136 DOI: 10.21037/qims-19-1090] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Multiphoton microscopy (MPM) offers a feasible approach for the biopsy in clinical medicine, but it has not been used in clinical applications due to the lack of efficient image processing methods, especially the automatic segmentation technology. Segmentation technology is still one of the most challenging assignments of the MPM imaging technique. Methods The MPM imaging segmentation model based on deep learning is one of the most effective methods to address this problem. In this paper, the practicability of using a convolutional neural network (CNN) model to segment the MPM image of skin cells in vivo was explored. A set of MPM in vivo skin cells images with a resolution of 128×128 was successfully segmented under the Python environment with TensorFlow. A novel deep-learning segmentation model named Dense-UNet was proposed. The Dense-UNet, which is based on U-net structure, employed the dense concatenation to deepen the depth of the network architecture and achieve feature reuse. This model included four expansion modules (each module consisted of four down-sampling layers) to extract features. Results Sixty training images were taken from the dorsal forearm using a femtosecond Ti:Sa laser running at 735 nm. The resolution of the images is 128×128 pixels. Experimental results confirmed that the accuracy of Dense-UNet (92.54%) was higher than that of U-Net (88.59%), with a significantly lower loss value of 0.1681. The 90.60% Dice coefficient value of Dense-UNet outperformed U-Net by 11.07%. The F1-Score of Dense-UNet, U-Net, and Seg-Net was 93.35%, 90.02%, and 85.04%, respectively. Conclusions The deepened down-sampling path improved the ability of the model to capture cellular fined-detailed boundary features, while the symmetrical up-sampling path provided a more accurate location based on the test result. These results were the first time that the segmentation of MPM in vivo images had been adopted by introducing a deep CNN to bridge this gap in Dense-UNet technology. Dense-UNet has reached ultramodern performance for MPM images, especially for in vivo images with low resolution. This implementation supplies an automatic segmentation model based on deep learning for high-precision segmentation of MPM images in vivo.
Collapse
Affiliation(s)
- Sijing Cai
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China.,School of Information Science and Engineering, Fujian University of Technology, Fuzhou, China
| | - Yunxian Tian
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Centre, Vancouver, BC, Canada.,Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Harvey Lui
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Centre, Vancouver, BC, Canada.,Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Haishan Zeng
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Centre, Vancouver, BC, Canada.,Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Yi Wu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China.,Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou, China
| | - Guannan Chen
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China.,Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou, China
| |
Collapse
|
13
|
Chang G, Wei Z. Ultrafast Fiber Lasers: An Expanding Versatile Toolbox. iScience 2020; 23:101101. [PMID: 32408170 PMCID: PMC7225726 DOI: 10.1016/j.isci.2020.101101] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 11/02/2022] Open
Abstract
Ultrafast fiber lasers have gained rapid advances in last decades for their intrinsic merits such as potential of all-fiber format, excellent beam quality, superior power scalability, and high single-pass gain, which opened widespread applications in high-field science, laser machining, precision metrology, optical communication, microscopy and spectroscopy, and modern ophthalmology, to name a few. Performance of an ultrafast fiber laser is well defined by the laser parameters including repetition rate, spectral bandwidth, pulse duration, pulse energy, wavelength tuning range, and average power. During past years, these parameters have been pushed to an unprecedented level. In this paper, we review these enabling technologies and explicitly show that the nonlinear interaction between ultrafast pulses and optical fibers plays the essential role. As a result of rapid development in both active and passive fibers, the toolbox of ultrafast fiber lasers will continue to expand and provide solutions to scientific and industrial problems.
Collapse
Affiliation(s)
- Guoqing Chang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhiyi Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| |
Collapse
|
14
|
Lin JH, Liao TY, Yang CY, Zhang DG, Yang CY, Lee YW, Das S, Dhar A, Chandra Paul M. Noise-like pulse generation around 1.3-µm based on cascaded Raman scattering. OPTICS EXPRESS 2020; 28:12252-12261. [PMID: 32403723 DOI: 10.1364/oe.385582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Based on cascaded Raman scattering, near-infrared (NIR) noise-like pulses (NLPs) were successfully demonstrated using a Yb-doped fiber amplifier system. Through a nonlinear fiber amplifier using a germanium-zirconia-silica Yb3+-doped single mode fiber as a gain fiber, the fourth-order Stokes wave (4th-SW) can be excited to extend the emission peak of approximately 1.2-µm and a 3-dB bandwidth of approximately 130 nm. To further shift the wavelength more efficiently toward 1.3 µm, filtered NLPs with an emission peak at 1075 nm were adopted as seeded pulses to excite the fifth-order Stokes wave (5th-SW) because of the better conversion efficiency of stimulated Raman scattering without gain competition with Yb-doped fiber. The generated NIR NLPs were shown to be an excellent light source for the photoluminescence emission from three photon absorption of perovskite to illustrate the red shift of the emission peak owing to the reabsorption effect.
Collapse
|