1
|
Wiesner E, Binz-Lotter J, Hackl A, Unnersjö-Jess D, Rutkowski N, Benzing T, Hackl MJ. Correlative multiphoton-STED microscopy of podocyte calcium levels and slit diaphragm ultrastructure in the renal glomerulus. Sci Rep 2024; 14:13019. [PMID: 38844492 PMCID: PMC11156906 DOI: 10.1038/s41598-024-63507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
In recent years functional multiphoton (MP) imaging of vital mouse tissues and stimulation emission depletion (STED) imaging of optically cleared tissues allowed new insights into kidney biology. Here, we present a novel workflow where MP imaging of calcium signals can be combined with super-resolved STED imaging for morphological analysis of the slit diaphragm (SD) within the same glomerulus. Mice expressing the calcium indicator GCaMP3 in podocytes served as healthy controls or were challenged with two different doses of nephrotoxic serum (NTS). NTS induced glomerular damage in a dose dependent manner measured by shortening of SD length. In acute kidney slices (AKS) intracellular calcium levels increased upon disease but showed a high variation between glomeruli. We could not find a clear correlation between intracellular calcium levels and SD length in the same glomerulus. Remarkably, analysis of the SD morphology of glomeruli selected during MP calcium imaging revealed a higher percentage of completely disrupted SD architecture than estimated by STED imaging alone. Our novel co-imaging protocol is applicable to a broad range of research questions. It can be used with different tissues and is compatible with diverse reporters and target proteins.
Collapse
Affiliation(s)
- Eva Wiesner
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Julia Binz-Lotter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Agnes Hackl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - David Unnersjö-Jess
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Nelli Rutkowski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Matthias J Hackl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Kobayashi M, Nakamura T, Nakamae H, Kim C, Akiyama H. Gain-switched pulse generation of 5.3 ps from 30 GHz-modulation-bandwidth 1270 nm DFB laser diode. OPTICS LETTERS 2023; 48:6344-6347. [PMID: 38039263 DOI: 10.1364/ol.510237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
We generated gain-switched pulses via electrical pulse excitations in a 1270 nm distributed feedback (DFB) laser diode (LD) with a direct-modulation bandwidth of 30 GHz. The measurements revealed short-pulse widths of 5.3 and 8.8 ps with and without chirp compensation, via a single-mode optical fiber. The 5.3 ps pulses exhibited a spectral width of 0.40 nm (spectral bandwidth of 71 GHz), yielding a time-bandwidth product of 0.38. Although the gain-switched pulses in DFB LDs inherently contain linear and nonlinear chirp, optimized pumping conditions enable generation of nearly transform-limited ps pulses after linear chirp compensation.
Collapse
|
3
|
Ishii H, Otomo K, Chang CP, Yamasaki M, Watanabe M, Yokoyama H, Nemoto T. All-synchronized picosecond pulses and time-gated detection improve the spatial resolution of two-photon STED microscopy in brain tissue imaging. PLoS One 2023; 18:e0290550. [PMID: 37616194 PMCID: PMC10449175 DOI: 10.1371/journal.pone.0290550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Super-resolution in two-photon excitation (2PE) microscopy offers new approaches for visualizing the deep inside the brain functions at the nanoscale. In this study, we developed a novel 2PE stimulated-emission-depletion (STED) microscope with all-synchronized picosecond pulse light sources and time-gated fluorescence detection, namely, all-pulsed 2PE-gSTED microscopy. The implementation of time-gating is critical to excluding undesirable signals derived from brain tissues. Even in a case using subnanosecond pulses for STED, the impact of time-gating was not negligible; the spatial resolution in the image of the brain tissue was improved by approximately 1.4 times compared with non time-gated image. This finding demonstrates that time-gating is more useful than previously thought for improving spatial resolution in brain tissue imaging. This microscopy will facilitate deeper super-resolution observation of the fine structure of neuronal dendritic spines and the intracellular dynamics in brain tissue.
Collapse
Affiliation(s)
- Hirokazu Ishii
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Kohei Otomo
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Japan
- Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ching-Pu Chang
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Japan
- Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | - Hiroyuki Yokoyama
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Japan
| | - Tomomi Nemoto
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| |
Collapse
|
4
|
Barsanti L, Birindelli L, Sbrana F, Lombardi G, Gualtieri P. Advanced Microscopy Techniques for Molecular Biophysics. Int J Mol Sci 2023; 24:9973. [PMID: 37373120 DOI: 10.3390/ijms24129973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Though microscopy is most often intended as a technique for providing qualitative assessment of cellular and subcellular properties, when coupled with other instruments such as wavelength selectors, lasers, photoelectric devices and computers, it can perform a wide variety of quantitative measurements, which are demanding in establishing relationships between the properties and structures of biological material in all their spatial and temporal complexities. These combinations of instruments are a powerful approach to improve non-destructive investigations of cellular and subcellular properties (both physical and chemical) at a macromolecular scale resolution. Since many subcellular compartments in living cells are characterized by structurally organized molecules, this review deals with three advanced microscopy techniques well-suited for these kind of investigations, i.e., microspectrophotometry (MSP), super-resolution localization microscopy (SRLM) and holotomographic microscopy (HTM). These techniques can achieve an insight view into the role intracellular molecular organizations such as photoreceptive and photosynthetic structures and lipid bodies play in many cellular processes as well as their biophysical properties. Microspectrophotometry uses a set-up based on the combination of a wide-field microscope and a polychromator, which allows the measurement of spectroscopic features such as absorption spectra. Super resolution localization microscopy combines dedicated optics and sophisticated software algorithms to overcome the diffraction limit of light and allow the visualization of subcellular structures and dynamics in greater detail with respect to conventional optical microscopy. Holotomographic microscopy combines holography and tomography techniques into a single microscopy set-up, and allows 3D reconstruction by means of the phase separation of biomolecule condensates. This review is organized in sections, which for each technique describe some general aspects, a peculiar theoretical aspect, a specific experimental configuration and examples of applications (fish and algae photoreceptors, single labeled proteins and endocellular aggregates of lipids).
Collapse
Affiliation(s)
- Laura Barsanti
- Istituto di Biofisica, CNR, Via Moruzzi 1, 56124 Pisa, Italy
| | | | | | - Giovanni Lombardi
- Istituto di Scienza e Tecnologia dell'Informazione, CNR, Via Moruzzi 1, 56124 Pisa, Italy
| | - Paolo Gualtieri
- Istituto di Biofisica, CNR, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
5
|
Focusing new light on brain functions: multiphoton microscopy for deep and super-resolution imaging. Neurosci Res 2021; 179:24-30. [PMID: 34861295 DOI: 10.1016/j.neures.2021.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022]
Abstract
Multiphoton microscopy has become a powerful tool for visualizing neurobiological phenomena such as the dynamics of individual synapses and the functional activities of neurons. Owing to its near-infrared excitation laser wavelength, multiphoton microscopy achieves greater penetration depth and is less invasive than single-photon excitation. Here, we review the principles of two-photon microscopy and its technical limitations (penetration depth and spatial resolution) on brain tissue imaging. We then describe the technological improvements of two-photon microscopy that enable deeper imaging with higher spatial resolution for investigating unrevealed brain functions.
Collapse
|
6
|
Abstract
This commentary summarizes the recent biophysical research conducted at the National Institute for Basic Biology, the National Institute for Physiological Sciences, and the Institute for Molecular Science in Okazaki, Japan.
Collapse
|