1
|
Unver Y, Ari B, Acar M, Yildiz Arslan S. A self-inducible heterologous protein expression system in Komagataella phaffii ( Pichia pastoris). 3 Biotech 2024; 14:193. [PMID: 39131177 PMCID: PMC11306816 DOI: 10.1007/s13205-024-04039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Komagataella phaffii (previously described as Pichia pastoris) is a yeast that produces high-level heterologous proteins with a wide range of applications in medicine and industry. The methanol-induced alcohol oxidase I promoter (PAOX1) is frequently used for protein expression in this yeast. However, limitations on the use of methanol have been observed in large-scale production, including its flammability, toxicity, and need for special handling. Here, we propose to develop a system using recombinant cells constitutively expressing pectinmethyl esterase for expression of two reporter proteins, GFP and azurin, under the control of PAOX1 using pectin in production medium. So, this system is coherent with yeast culture medium containing pectin and heterologous gene inserted downstream of PAOX1 can be successfully expressed without the addition of methanol. Therefore, this novel Self-inducibLe heterologous protein EXpression (SILEX) system, which does not require the addition of methanol, can be used for the production of any protein. It can also be adapted for large-scale production. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04039-x.
Collapse
Affiliation(s)
- Yagmur Unver
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Betul Ari
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Melek Acar
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Seyda Yildiz Arslan
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| |
Collapse
|
2
|
Lecinski S, Shepherd JW, Bunting K, Dresser L, Quinn SD, MacDonald C, Leake MC. Correlating viscosity and molecular crowding with fluorescent nanobeads and molecular probes: in vitro and in vivo. Interface Focus 2022; 12:20220042. [PMID: 36330320 PMCID: PMC9560789 DOI: 10.1098/rsfs.2022.0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 02/02/2023] Open
Abstract
In eukaryotes, intracellular physico-chemical properties like macromolecular crowding and cytoplasmic viscoelasticity influence key processes such as metabolic activities, molecular diffusion and protein folding. However, mapping crowding and viscoelasticity in living cells remains challenging. One approach uses passive rheology in which diffusion of exogenous fluorescent particles internalized in cells is tracked and physico-chemical properties inferred from derived mean square displacement relations. Recently, the crGE2.3 Förster resonance energy transfer biosensor was developed to quantify crowding in cells, though it is unclear how this readout depends on viscoelasticity and the molecular weight of the crowder. Here, we present correlative, multi-dimensional data to explore diffusion and molecular crowding characteristics of molecular crowding agents using super-resolved fluorescence microscopy and ensemble time-resolved spectroscopy. We firstly characterize in vitro and then apply these insights to live cells of budding yeast Saccharomyces cerevisiae. It is to our knowledge the first time this has been attempted. We demonstrate that these are usable both in vitro and in the case of endogenously expressed sensors in live cells. Finally, we present a method to internalize fluorescent beads as in situ viscoelasticity markers in the cytoplasm of live yeast cells and discuss limitations of this approach including impairment of cellular function.
Collapse
Affiliation(s)
- Sarah Lecinski
- Department of Physics, University of York, York YO10 5DD, UK
| | - Jack W. Shepherd
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| | - Kate Bunting
- Department of Biology, University of York, York YO10 5DD, UK
| | - Lara Dresser
- Department of Physics, University of York, York YO10 5DD, UK
| | - Steven D. Quinn
- Department of Physics, University of York, York YO10 5DD, UK
| | - Chris MacDonald
- Department of Biology, University of York, York YO10 5DD, UK
| | - Mark C. Leake
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
3
|
Wendt S, Johnson S, Weilinger NL, Groten C, Sorrentino S, Frew J, Yang L, Choi HB, Nygaard HB, MacVicar BA. Simultaneous imaging of redox states in dystrophic neurites and microglia at Aβ plaques indicate lysosome accumulation not microglia correlate with increased oxidative stress. Redox Biol 2022; 56:102448. [PMID: 36037587 PMCID: PMC9440309 DOI: 10.1016/j.redox.2022.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The inter-relationship between microglia dynamics and oxidative stress (Ox-stress) in dystrophic neurites (DNs) at Alzheimer's Disease (AD) plaques may contribute to the pathological changes in neurons. We developed new in vivo imaging strategies to combine EGFP expression in microglia with neuronal expression of genetically encoded ratiometric redox sensors (rogRFP2 or roGFP1), and immunohistochemistry to investigate how microglia influence Ox-stress at amyloid plaques in 5xFAD AD mice. By simultaneously imaging microglia morphology and neuronal Ox-stress over time in vivo and in fixed brains we found that microglia preferentially enwrapped DNs exhibiting the greatest degree of Ox-stress. After microglia were partially depleted with the CSF1 receptor antagonist PLX3397, Ox-stress in DNs increased in a manner that was inversely correlated to the extent of coverage of the adjacent Aβ plaques by the remaining microglia. These data suggest that microglia do not create Ox-stress at Aβ plaques but instead create protective barriers around Aβ plaques possibly reducing the spread of Aβ. Intracranial injection of Aβ was sufficient to induce neuronal Ox-stress suggesting it to be the initial trigger of Ox-stress generation. Although Ox-stress is increased in DNs, neuronal survival is enhanced following microglia depletion indicating complex and multifactorial roles of microglia with both neurotoxic and neuroprotective components. Increased Ox-stress of DNs was correlated with higher LAMP1 and ubiquitin immunoreactivity supporting proposed mechanistic links between lysosomal accumulation in DNs and their intrinsic generation of Ox-stress. Our results suggest protective as well as neurotoxic roles for microglia at plaques and that the generation of Ox-stress of DNs could intrinsically be generated via lysosomal disruption rather than by microglia. In Brief: Simultaneous imaging of microglia and neuronal Ox-stress revealed a double-edged role for microglia in 5xFAD mice. Plaque associated microglia were attracted to and enwrapped Aβ plaques as well as the most highly oxidized DNs. After partial depletion of microglia, DNs were larger with greater levels of Ox-stress. Despite increased Ox-stress after microglia removal neuronal survival improved. Greater Ox-stress was correlated with increased levels of LAMP1 and ubiquitin thereby linking lysosome accumulation and Ox-stress in DNs.
Collapse
Affiliation(s)
- Stefan Wendt
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada.
| | - Sora Johnson
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Nicholas L Weilinger
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Christopher Groten
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Stefano Sorrentino
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Jonathan Frew
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Lucy Yang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Hyun B Choi
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Haakon B Nygaard
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Brian A MacVicar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
4
|
Uğurlu Ö, Evran S. Bimolecular fluorescence complementation assay to explore protein-protein interactions of the Yersinia virulence factor YopM. Biochem Biophys Res Commun 2021; 582:43-48. [PMID: 34689104 DOI: 10.1016/j.bbrc.2021.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
Yersinia outer protein M (YopM) is one of the effector proteins and essential for virulence. YopM is delivered by the Yersinia type III secretion system (T3SS) into the host cell, where it shows immunosuppressive effect through interaction with host proteins. Therefore, protein-protein interactions of YopM is significant to understand its molecular mechanism. In this study, we aimed to explore protein-protein interactions of YopM with the two components of T3SS, namely LcrV and LcrG. We used bimolecular fluorescence complementation (BiFC) assay and monitored the reassembly of green fluorescence protein in Escherichia coli. As an indicator of the protein-protein interaction, we monitored the in vivo reconstitution of fluorescence by measuring fluorescence intensity and imaging the cells under fluorescence microscope. We showed, for the first time, that YopM interacts with LcrG, but not with LcrV. Here, we propose BiFC assay as a simple method to screen novel interaction partners of YopM.
Collapse
Affiliation(s)
- Özge Uğurlu
- Ege University, Faculty of Science, Department of Biochemistry, 35100, Bornova-Izmir, Turkey; Department of Medical Services and Techniques, Hatay Vocational School of Health Services, Hatay Mustafa Kemal University, Tayfur Sökmen Campus, 31060, Alahan-Antakya/ Hatay, Turkey
| | - Serap Evran
- Ege University, Faculty of Science, Department of Biochemistry, 35100, Bornova-Izmir, Turkey.
| |
Collapse
|
5
|
|
6
|
Gao D, Barber PR, Chacko JV, Kader Sagar MA, Rueden CT, Grislis AR, Hiner MC, Eliceiri KW. FLIMJ: An open-source ImageJ toolkit for fluorescence lifetime image data analysis. PLoS One 2020; 15:e0238327. [PMID: 33378370 PMCID: PMC7773231 DOI: 10.1371/journal.pone.0238327] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
In the field of fluorescence microscopy, there is continued demand for dynamic technologies that can exploit the complete information from every pixel of an image. One imaging technique with proven ability for yielding additional information from fluorescence imaging is Fluorescence Lifetime Imaging Microscopy (FLIM). FLIM allows for the measurement of how long a fluorophore stays in an excited energy state, and this measurement is affected by changes in its chemical microenvironment, such as proximity to other fluorophores, pH, and hydrophobic regions. This ability to provide information about the microenvironment has made FLIM a powerful tool for cellular imaging studies ranging from metabolic measurement to measuring distances between proteins. The increased use of FLIM has necessitated the development of computational tools for integrating FLIM analysis with image and data processing. To address this need, we have created FLIMJ, an ImageJ plugin and toolkit that allows for easy use and development of extensible image analysis workflows with FLIM data. Built on the FLIMLib decay curve fitting library and the ImageJ Ops framework, FLIMJ offers FLIM fitting routines with seamless integration with many other ImageJ components, and the ability to be extended to create complex FLIM analysis workflows. Building on ImageJ Ops also enables FLIMJ's routines to be used with Jupyter notebooks and integrate naturally with science-friendly programming in, e.g., Python and Groovy. We show the extensibility of FLIMJ in two analysis scenarios: lifetime-based image segmentation and image colocalization. We also validate the fitting routines by comparing them against industry FLIM analysis standards.
Collapse
Affiliation(s)
- Dasong Gao
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
| | - Paul R. Barber
- UCL Cancer Institute, Paul O’Gorman Building, University College London, London, United Kingdom
| | - Jenu V. Chacko
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
| | - Md. Abdul Kader Sagar
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States of America
| | - Curtis T. Rueden
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
| | - Aivar R. Grislis
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
| | - Mark C. Hiner
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States of America
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States of America
- Morgridge Institute for Research, University of Wisconsin, Madison, WI, United States of America
| |
Collapse
|
7
|
Immunometabolism in the Brain: How Metabolism Shapes Microglial Function. Trends Neurosci 2020; 43:854-869. [DOI: 10.1016/j.tins.2020.08.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
|
8
|
Mukherjee S, Hung ST, Douglas N, Manna P, Thomas C, Ekrem A, Palmer AE, Jimenez R. Engineering of a Brighter Variant of the FusionRed Fluorescent Protein Using Lifetime Flow Cytometry and Structure-Guided Mutations. Biochemistry 2020; 59:3669-3682. [PMID: 32914619 DOI: 10.1021/acs.biochem.0c00484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of fluorescent proteins (FPs) has revolutionized biological imaging. FusionRed, a monomeric red FP (RFP), is known for its low cytotoxicity and correct localization of target fusion proteins in mammalian cells but is limited in application by low fluorescence brightness. We report a brighter variant of FusionRed, "FR-MQV," which exhibits an extended fluorescence lifetime (2.8 ns), enhanced quantum yield (0.53), higher extinction coefficient (∼140 000 M-1 cm-1), increased radiative rate constant, and reduced nonradiative rate constant with respect to its precursor. The properties of FR-MQV derive from three mutations-M42Q, C159V, and the previously identified L175M. A structure-guided approach was used to identify and mutate candidate residues around the para-hydroxyphenyl and the acylimine sites of the chromophore. The C159V mutation was identified via lifetime-based flow cytometry screening of a library in which multiple residues adjacent to the para-hydroxyphenyl site of the chromophore were mutated. The M42Q mutation is located near the acylimine moiety of the chromophore and was discovered using site-directed mutagenesis guided by X-ray crystal structures. FR-MQV exhibits a 3.4-fold higher molecular brightness and a 5-fold increase in the cellular brightness in HeLa cells [based on fluorescence-activated cell sorting (FACS)] compared to FusionRed. It also retains the low cytotoxicity and high-fidelity localization of FusionRed, as demonstrated through assays in mammalian cells. These properties make FR-MQV a promising template for further engineering into a new family of RFPs.
Collapse
Affiliation(s)
- Srijit Mukherjee
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado at Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - Sheng-Ting Hung
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
| | - Nancy Douglas
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
| | - Premashis Manna
- Department of Chemistry, MIT, 77 Massachusetts Avenue, 18-084, Cambridge, Massachusetts 02139, United States
| | - Connor Thomas
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
| | - Annika Ekrem
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
| | - Amy E Palmer
- Department of Biochemistry, University of Colorado at Boulder, 596 UCB, Boulder, Colorado 80309, United States
- BioFrontiers Institute, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80309, United States
| | - Ralph Jimenez
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado at Boulder, 215 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
9
|
York EM, Zhang J, Choi HB, MacVicar BA. Neuroinflammatory inhibition of synaptic long-term potentiation requires immunometabolic reprogramming of microglia. Glia 2020; 69:567-578. [PMID: 32946147 DOI: 10.1002/glia.23913] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022]
Abstract
Immunometabolism refers to the rearrangement of metabolic pathways in response to immune stimulation, and the ability of these metabolic pathways themselves to control immune functions. Many aspects of immunometabolism have been revealed through studies of peripheral immune cells. However, immunometabolic reprogramming of microglia, the resident immune cell of the central nervous system, and the consequential outcome on neuronal activity have remained difficult to unravel. Microglia are highly sensitive to subtle changes in their environment, limiting the techniques available to study their metabolic and inflammatory profiles. Here, using fluorescence lifetime imaging of endogenous NAD(P)H, we measure the metabolic activity of individual microglia within acute hippocampal slices. We observed an LPS-induced increase in aerobic glycolysis, which was blocked by the addition of 5 mM 2-deoxyglucose (2DG). This LPS-induced glycolysis in microglia was necessary for the stabilization of hypoxia inducible factor-1α (HIF-1α) and production of the proinflammatory cytokine, interleukin-1β (IL-1β). Upon release, IL-1β acted via the neuronal interleukin-1 receptor to inhibit the formation of synaptic long-term potentiation (LTP) following high frequency stimulation. Remarkably, the addition of 2DG to blunt the microglial glycolytic increase also inhibited HIF-1α accumulation and IL-1β production, and therefore rescued LTP in LPS-stimulated slices. Overall, these data reveal the importance of metabolic reprogramming in regulating microglial immune functions, with appreciable outcomes on cytokine release and neuronal activity.
Collapse
Affiliation(s)
- Elisa M York
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.,Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, USA
| | - Jingfei Zhang
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hyun B Choi
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian A MacVicar
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Sagar MAK, Ouellette JN, Cheng KP, Williams JC, Watters JJ, Eliceiri KW. Microglia activation visualization via fluorescence lifetime imaging microscopy of intrinsically fluorescent metabolic cofactors. NEUROPHOTONICS 2020; 7:035003. [PMID: 32821772 PMCID: PMC7414793 DOI: 10.1117/1.nph.7.3.035003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 07/28/2020] [Indexed: 05/08/2023]
Abstract
Significance: A major obstacle to studying resident microglia has been their similarity to infiltrating immune cell types and the lack of unique protein markers for identifying the functional state. Given the role of microglia in all neural diseases and insults, accurate tools for detecting their function beyond morphologic alterations are necessary. Aims: We hypothesized that microglia would have unique metabolic fluxes in reduced nicotinamide adenine dinucleotide (NADH) that would be detectable by relative changes in fluorescence lifetime imaging microscopy (FLIM) parameters, allowing for identification of their activation status. Fluorescence lifetime of NADH has been previously demonstrated to show differences in metabolic fluxes. Approach: Here, we investigate the use of the label-free method of FLIM-based detection of the endogenous metabolic cofactor NADH to identify microglia and characterize their activation status. To test whether microglial activation would also confer a unique NADH lifetime signature, murine primary microglial cultures and adult mice were treated with lipopolysaccharide (LPS). Results: We found that LPS-induced microglia activation correlates with detected changes in NADH lifetime and its free-bound ratio. This indicates that NADH lifetime can be used to monitor microglia activation in a label-free fashion. Moreover, we found that there is an LPS dose-dependent change associated with reactive microglia lifetime fluxes, which is also replicated over time after LPS treatment. Conclusion: We have demonstrated a label-free way of monitoring microglia activation via quantifying lifetime of endogenous metabolic coenzyme NADH. Upon LPS-induced activation, there is a significant change in the fluorescence lifetime following activation. Together, these results indicate that NADH FLIM approaches can be used as a method to characterize microglia activation state, both in vitro and ex vivo.
Collapse
Affiliation(s)
- Md. Abdul K. Sagar
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Jonathan N. Ouellette
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Kevin P. Cheng
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Justin C. Williams
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Jyoti J. Watters
- University of Wisconsin-Madison, Department of Comparative Biosciences, Madison, Wisconsin, United States
| | - Kevin W. Eliceiri
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, United States
- Morgridge Institute for Research, Madison, Wisconsin, United States
| |
Collapse
|
11
|
Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat Commun 2020; 11:1559. [PMID: 32214088 PMCID: PMC7096448 DOI: 10.1038/s41467-020-15267-z] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Microglia are highly motile cells that continuously monitor the brain environment and respond to damage-associated cues. While glucose is the main energy substrate used by neurons in the brain, the nutrients metabolized by microglia to support surveillance of the parenchyma remain unexplored. Here, we use fluorescence lifetime imaging of intracellular NAD(P)H and time-lapse two-photon imaging of microglial dynamics in vivo and in situ, to show unique aspects of the microglial metabolic signature in the brain. Microglia are metabolically flexible and can rapidly adapt to consume glutamine as an alternative metabolic fuel in the absence of glucose. During insulin-induced hypoglycemia in vivo or in aglycemia in acute brain slices, glutaminolysis supports the maintenance of microglial process motility and damage-sensing functions. This metabolic shift sustains mitochondrial metabolism and requires mTOR-dependent signaling. This remarkable plasticity allows microglia to maintain their critical surveillance and phagocytic roles, even after brain neuroenergetic homeostasis is compromised. Glucose is the main source of fuel in the brain. Here, the authors show that in the absence of glucose, glutamine is required for microglia to maintain their immune surveillance function.
Collapse
|