1
|
Pu Z, Wu Y, Zhu Z, Zhao H, Cui D. A new horizon for neuroscience: terahertz biotechnology in brain research. Neural Regen Res 2025; 20:309-325. [PMID: 38819036 PMCID: PMC11317941 DOI: 10.4103/nrr.nrr-d-23-00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/18/2023] [Accepted: 01/03/2024] [Indexed: 06/01/2024] Open
Abstract
Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences. In this article, we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry. Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease, cerebrovascular disease, glioma, psychiatric disease, traumatic brain injury, and myelin deficit. In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases. Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood, the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications. However, the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications. This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
Collapse
Affiliation(s)
- Zhengping Pu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang, Zhejiang Province, China
| | - Yu Wu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, China
| | - Zhongjie Zhu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Hongwei Zhao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, China
| | - Donghong Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Wu X, Tao R, Sun Z, Zhang T, Li X, Yuan Y, Zheng S, Cao C, Zhang Z, Zhao X, Yang P. Ensemble learning prediction framework for EGFR amplification status of glioma based on terahertz spectral features. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124351. [PMID: 38692109 DOI: 10.1016/j.saa.2024.124351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/24/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Epidermal growth factor receptor (EGFR) plays a pivotal role in the initiation and progression of gliomas. In particular, in glioblastoma, EGFR amplification emerges as a catalyst for invasion, proliferation, and resistance to radiotherapy and chemotherapy. Current approaches are not capable of providing rapid diagnostic results of molecular pathology. In this study, we propose a terahertz spectroscopic approach for predicting the EGFR amplification status of gliomas for the first time. A machine learning model was constructed using the terahertz response of the measured glioma tissues, including the absorption coefficient, refractive index, and dielectric loss tangent. The novelty of our model is the integration of three classical base classifiers, i.e., support vector machine, random forest, and extreme gradient boosting. The ensemble learning method combines the advantages of various base classifiers, this model has more generalization ability. The effectiveness of the proposed method was validated by applying an individual test set. The optimal performance of the integrated algorithm was verified with an area under the curve (AUC) maximum of 85.8 %. This signifies a significant stride toward more effective and rapid diagnostic tools for guiding postoperative therapy in gliomas.
Collapse
Affiliation(s)
- Xianhao Wu
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070 China
| | - Zhiyan Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070 China
| | - Tianyao Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xingyue Li
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuan Yuan
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shaowen Zheng
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Can Cao
- Laser Engineering Center, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Zhaohui Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoyan Zhao
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China.
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070 China.
| |
Collapse
|
3
|
Tang M, Zhang M, Fu Y, Chen L, Li D, Zhang H, Yang Z, Wang C, Xiu P, Wilksch JJ, Luo Y, Han J, Yang H, Wang H. Terahertz label-free detection of nicotine-induced neural cell changes and the underlying mechanisms. Biosens Bioelectron 2023; 241:115697. [PMID: 37751650 DOI: 10.1016/j.bios.2023.115697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023]
Abstract
Nicotine exposure can lead to neurological impairments and brain tumors, and a label-free and nondestructive detection technique is urgently required by the scientific community to assess the effects of nicotine on neural cells. Herein, a terahertz (THz) time-domain attenuated total reflection (TD-ATR) spectroscopy approach is reported, by which the effects of nicotine on normal and cancerous neural cells, i.e., HEB and U87 cells, are successfully investigated in a label/stain-free and nondestructive manner. The obtained THz absorption coefficients of HEB cells exposed to low-dose nicotine and high-dose nicotine are smaller and larger, respectively, than the untreated cells. In contrast, the THz absorption coefficients of U87 cells treated by nicotine are always smaller than the untreated cells. The THz absorption coefficients can be well related to the proliferation properties (cell number and compositional changes) and morphological changes of neural cells, by which different types of neural cells are differentiated and the viabilities of neural cells treated by nicotine are reliably assessed. Collectively, this work sheds new insights on the effects of nicotine on neural cells, and provides a useful tool (THz TD-ATR spectroscopy) for the study of chemical-cell interactions.
Collapse
Affiliation(s)
- Mingjie Tang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Mingkun Zhang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ying Fu
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ligang Chen
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Dandan Li
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hua Zhang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zhongbo Yang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Chunlei Wang
- Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Jonathan J Wilksch
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Jiaguang Han
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Haijun Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
| | - Huabin Wang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
4
|
Zheng X, Lordon B, Mingotaud A, Vicendo P, Brival R, Fourquaux I, Gibot L, Gallot G. Terahertz Spectroscopy Sheds Light on Real-Time Exchange Kinetics Occurring through Plasma Membrane during Photodynamic Therapy Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300589. [PMID: 37096839 PMCID: PMC10288265 DOI: 10.1002/advs.202300589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Methods to follow in real time complex processes occurring along living cell membranes such as cell permeabilization are rare. Here, the terahertz spectroscopy reveals early events in plasma membrane alteration generated during photodynamic therapy (PDT) protocol, events which are not observable in any other conventional biological techniques performed in parallel as comparison. Photodynamic process is examined in Madin-Darby canine kidney cells using Pheophorbide (Pheo) photosensitizer alone or alternatively encapsulated in poly(ethylene oxide)-block-poly(ε-caprolactone) micelles for drug delivery purpose. Terahertz spectroscopy (THz) reveals that plasma membrane permeabilization starts simultaneously with illumination and is stronger when photosensitizer is encapsulated. In parallel, the exchange of biological species is assessed. Over several hours, this conventional approach demonstrates significant differences between free and encapsulated Pheo, the latter leading to high penetration of propidium iodide, Na+ and Ca2+ ions, and a high level of leakage of K+ , ATP, and lactate dehydrogenase. THz spectroscopy provides, in a single measurement, the relative number of defects per membrane surface created after PDT, which is not achieved by any other method, providing early, sensitive real-time information. THz spectroscopy is therefore a promising technique and can be applied to any biological topic requiring the examination of short-term plasma membrane permeabilization.
Collapse
Affiliation(s)
- Xiujun Zheng
- Laboratoire d'Optique et BiosciencesEcole PolytechniqueCNRSINSERMIP ParisPalaiseau91128France
| | - Blandine Lordon
- Laboratoire d'Optique et BiosciencesEcole PolytechniqueCNRSINSERMIP ParisPalaiseau91128France
| | - Anne‐Françoise Mingotaud
- Laboratoire des IMRCPUniversité de ToulouseCNRS UMR 5623Université Toulouse III ‐ Paul Sabatier118 Rte de NarbonneToulouse31062France
| | - Patricia Vicendo
- Laboratoire des IMRCPUniversité de ToulouseCNRS UMR 5623Université Toulouse III ‐ Paul Sabatier118 Rte de NarbonneToulouse31062France
| | - Rachel Brival
- Centre de Microscopie Electronique Appliquée à la BiologieFaculté de Médecine Toulouse RangueilUniversité de Toulouse133 route de NarbonneToulouse31062France
| | - Isabelle Fourquaux
- Centre de Microscopie Electronique Appliquée à la BiologieFaculté de Médecine Toulouse RangueilUniversité de Toulouse133 route de NarbonneToulouse31062France
| | - Laure Gibot
- Laboratoire des IMRCPUniversité de ToulouseCNRS UMR 5623Université Toulouse III ‐ Paul Sabatier118 Rte de NarbonneToulouse31062France
| | - Guilhem Gallot
- Laboratoire d'Optique et BiosciencesEcole PolytechniqueCNRSINSERMIP ParisPalaiseau91128France
| |
Collapse
|
5
|
Fu Y, Chen T, Chen L, Guo Y, Yang Z, Mu N, Feng H, Zhang M, Wang H. Terahertz time-domain attenuated total reflection spectroscopy integrated with a microfluidic chip. Front Bioeng Biotechnol 2023; 11:1143443. [PMID: 36994356 PMCID: PMC10040880 DOI: 10.3389/fbioe.2023.1143443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
The integration of a microfluidic chip into terahertz time-domain attenuated total reflection (THz TD-ATR) spectroscopy is highly demanded for the accurate measurement of aqueous samples. Hitherto, however little work has been reported on this regard. Here, we demonstrate a strategy of fabricating a polydimethylsiloxane microfluidic chip (M-chip) suitable for the measurement of aqueous samples, and investigate the effects of its configuration, particularly the cavity depth of the M-chip on THz spectra. By measuring pure water, we find that the Fresnel formulae of two-interface model should be applied to analyze the THz spectral data when the depth is smaller than 210 μm, but the Fresnel formula of one-interface model can be applied when the depth is no less than 210 μm. We further validate this by measuring physiological solution and protein solution. This work can help promote the application of THz TD-ATR spectroscopy in the study of aqueous biological samples.
Collapse
Affiliation(s)
- Ying Fu
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ligang Chen
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Yuansen Guo
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Zhongbo Yang
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Ning Mu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingkun Zhang
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Mingkun Zhang, ; Huabin Wang,
| | - Huabin Wang
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Mingkun Zhang, ; Huabin Wang,
| |
Collapse
|
6
|
Wu X, Tao R, Zhang T, Liu X, Wang J, Zhang Z, Zhao X, Yang P. Biomedical applications of terahertz spectra in clinical and molecular pathology of human glioma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121933. [PMID: 36208578 DOI: 10.1016/j.saa.2022.121933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Gliomas are the most common type of primary tumor originating in the central nervous system of adults. Tumor histological type, pathological grade, and molecular pathology are significant prognosis and predictive factors. In this study, we were aiming to predict histological type and molecular pathological features based on terahertz time-domain spectroscopy technology. Nine gliomas with different grades, one meningioma, and one lymphoma were enrolled. There were significant differences in terahertz absorption coefficient between normal brain tissue, tumoral-periphery, and tumoral-center tissue in specific frequency bands (0.2-1.4 THz). Histological type, pathological grade, and glioma-specific biomarkers were closely related to the terahertz absorption coefficient in both tumoral-periphery and tumoral-center tissues. Interestingly, tumoral-periphery showed more obvious differences than tumoral-center tissues in almost all aspects. All the results show that the terahertz technology has potential application value in the intraoperative real-time glioma recognition and diagnosis of glioma histological and molecular pathological features.
Collapse
Affiliation(s)
- Xianhao Wu
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tianyao Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xing Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoyan Zhao
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Zhang G, Wang Y, Qian J, Wang Y, Li X, Lü J. Terahertz refractive phenotype of living cells. Front Bioeng Biotechnol 2023; 10:1105249. [PMID: 36704312 PMCID: PMC9871359 DOI: 10.3389/fbioe.2022.1105249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Cellular refractive index is a vital phenotypic parameter for understanding the cell functional activities. So far, there remains technical challenges to obtain refractive index of viable cells at the terahertz frequency in which contains rich information closely related to their physiological status. Here we introduce a label-free optical platform for interrogating cellular phenotypes to measure the refractive index of living cells in near-physiological environments by using terahertz spectroscopy with the combination of cellular encapsulation in a confined solution droplet. The key technical feature with cells encapsulated in aqueous droplets allows for keeping cellular viability while eliminating the strong adsorption of solvent water to terahertz signal. The obtained high signal-to-noise ratio enables to differentiate different cell types (e.g., E. coli, stem cell and cancer cell) and their states under stress conditions. The integrating of terahertz spectroscopy to droplet microfluidic further realizes automated and high-through sample preparation and detection, providing a practical toolkit for potential application in cellular health evaluation and phenotypic drug discovery.
Collapse
Affiliation(s)
- Guangxu Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yadi Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jiang Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueling Li
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Junhong Lü
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Zang Z, Li Z, Wang J, Lu X, Lyu Q, Tang M, Cui HL, Yan S. Terahertz spectroscopic monitoring and analysis of citrus leaf water status under low temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:52-59. [PMID: 36375327 DOI: 10.1016/j.plaphy.2022.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Low temperature stress, in the form of chilling and freezing, is one of the major environmental factors impacting on citrus yield, which changes plant's water state and results in the crops' sub-health or injury. The innovative terahertz (THz) spectroscopy and imaging based sensing technology has been shown to be a suitable tool for plant leaf water status determination, due to THz radiation's innate sensitivity to hydrogen bond vibration in aqueous solutions, which is usually related to plant phenotype change. We demonstrate experimentally that the THz absorption coefficient of leaf could be used for distinguishing plant's physiological stress status, exhibiting clear decreasing or increasing trend under chilling or freezing stress respectively. The underlying rationale might be that membrane damage shows a diverse pattern, changing the intra- or extra-cellular liquid environments, likely being linked to the various THz spectral characteristics. There were different adaptations in leaf morphology, leading to different leaf density, which in turn affects the water volume fraction. Moreover, different patterns of the dynamic equilibrium state of free water and bound water under chilling and freezing treatment were revealed by THz spectroscopy. Here, THz spectroscopic monitoring has shown unique potential for judging citrus's low temperature stress state through bio-water detection and discrimination.
Collapse
Affiliation(s)
- Ziyi Zang
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, 130061, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China
| | - Zaoxia Li
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, 130061, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China
| | - Jie Wang
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, 130061, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China
| | - Xingxing Lu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, 130061, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China
| | - Qiang Lyu
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Mingjie Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hong-Liang Cui
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin, 130061, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China.
| | - Shihan Yan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
9
|
Shi W, Li C, Wang H, Wang Z, Yang L. Quantitative detection of THz-ATR spectra of aqueous samples under strong-field terahertz wave. iScience 2022; 26:105871. [PMID: 36632063 PMCID: PMC9826933 DOI: 10.1016/j.isci.2022.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Owing to the characteristics of THz wave, the terahertz time-domain spectral (THz-TDS) system has potentials in the field of biological macromolecule detection. However, water with strong absorption effect on THz wave exists in most biological detection, so the research focus in this field is to study aqueous samples. In view of these, THz spectroscopy system has research value for qualitative and quantitative detection of α-lactose and its water-containing samples. This research used a THz-TDS system with LiNbO3 crystal to generate strong THz wave that was used to test 0.29 mmol α-lactose samples with water content of 15 μL-930 μL by using attenuating total reflection (ATR) prism. The absorption peak at 0.53 THz is detected, and with the increase of water content, the curve of absorption spectrum is observed to move up on the whole. This research has a guiding role for the test and improvement of water content limit in this field.
Collapse
Affiliation(s)
- Wei Shi
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an 710048, China,Corresponding author
| | - Chunhui Li
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an 710048, China
| | - Haiqing Wang
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an 710048, China
| | - Zhiquan Wang
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an 710048, China
| | - Lei Yang
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
10
|
Hou L, Wang J, Wang H, Yang L, Shi W. Experimental Detection and Simulation of Terahertz Spectra of Aqueous L-Arginine. BIOSENSORS 2022; 12:1029. [PMID: 36421147 PMCID: PMC9688293 DOI: 10.3390/bios12111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Terahertz (THz) wave is a good candidate for biological sample detection, because vibration and rotation energy levels of biomolecule are in THz band. However, the strong absorption of THz wave by water in biological samples hinders its development. In this paper, a method for direct detection of THz absorption spectra of L-arginine suspension was proposed by using a strong field THz radiation source combined with a polyethylene cell with micrometer thickness in a THz time-domain spectroscopy system. And the THz absorption spectrum of L-arginine solution was simulated by the density functional theory and the simulation result is in good agreement with the experimental results. Finally, the types of chemical bond interaction that cause the absorption peak are identified based on the experimental and simulation results. This work paves a way to investigate the THz absorption spectra and intramolecular interactions of aqueous biological samples.
Collapse
Affiliation(s)
- Lei Hou
- Department of Physics, Xi’an University of Technology, Xi’an 710048, China
- School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an 710048, China
| | - Junnan Wang
- School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an 710048, China
| | - Haiqing Wang
- Department of Physics, Xi’an University of Technology, Xi’an 710048, China
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an 710048, China
| | - Lei Yang
- School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an 710048, China
| | - Wei Shi
- Department of Physics, Xi’an University of Technology, Xi’an 710048, China
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
11
|
Yu W, Shi J, Huang G, Zhou J, Zhan X, Guo Z, Tian H, Xie F, Yang X, Fu W. THz-ATR Spectroscopy Integrated with Species Recognition Based on Multi-Classifier Voting for Automated Clinical Microbial Identification. BIOSENSORS 2022; 12:bios12060378. [PMID: 35735526 PMCID: PMC9221034 DOI: 10.3390/bios12060378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 12/31/2022]
Abstract
The demand for rapid and accurate identification of microorganisms is growing due to considerable importance in all areas related to public health and safety. Here, we demonstrate a rapid and label-free strategy for the identification of microorganisms by integrating terahertz-attenuated total reflection (THz-ATR) spectroscopy with an automated recognition method based on multi-classifier voting. Our results show that 13 standard microbial strains can be classified into three different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and fungi) by THz-ATR spectroscopy. To detect clinical microbial strains with better differentiation that accounts for their greater sample heterogeneity, an automated recognition algorithm is proposed based on multi-classifier voting. It uses three types of machine learning classifiers to identify five different groups of clinical microbial strains. The results demonstrate that common microorganisms, once time-consuming to distinguish by traditional microbial identification methods, can be rapidly and accurately recognized using THz-ATR spectra in minutes. The proposed automatic recognition method is optimized by a spectroscopic feature selection algorithm designed to identify the optimal diagnostic indicator, and the combination of different machine learning classifiers with a voting scheme. The total diagnostic accuracy reaches 80.77% (as high as 99.6% for Enterococcus faecalis) for 1123 isolates from clinical samples of sputum, blood, urine, and feces. This strategy demonstrates that THz spectroscopy integrated with an automatic recognition method based on multi-classifier voting significantly improves the accuracy of spectral analysis, thereby presenting a new method for true label-free identification of clinical microorganisms with high efficiency.
Collapse
Affiliation(s)
- Wenjing Yu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (W.Y.); (G.H.); (J.Z.); (X.Z.); (H.T.); (F.X.)
| | - Jia Shi
- Tianjin Key Laboratory of Optoelectronic Detection Technology and System, School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China; (J.S.); (Z.G.)
| | - Guorong Huang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (W.Y.); (G.H.); (J.Z.); (X.Z.); (H.T.); (F.X.)
| | - Jie Zhou
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (W.Y.); (G.H.); (J.Z.); (X.Z.); (H.T.); (F.X.)
| | - Xinyu Zhan
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (W.Y.); (G.H.); (J.Z.); (X.Z.); (H.T.); (F.X.)
| | - Zekang Guo
- Tianjin Key Laboratory of Optoelectronic Detection Technology and System, School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China; (J.S.); (Z.G.)
| | - Huiyan Tian
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (W.Y.); (G.H.); (J.Z.); (X.Z.); (H.T.); (F.X.)
| | - Fengxin Xie
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (W.Y.); (G.H.); (J.Z.); (X.Z.); (H.T.); (F.X.)
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (W.Y.); (G.H.); (J.Z.); (X.Z.); (H.T.); (F.X.)
- Correspondence: (X.Y.); (W.F.)
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; (W.Y.); (G.H.); (J.Z.); (X.Z.); (H.T.); (F.X.)
- Correspondence: (X.Y.); (W.F.)
| |
Collapse
|
12
|
Liao Y, Zhang M, Tang M, Chen L, Li X, Liu Z, Wang H. Label-free study on the effect of a bioactive constituent on glioma cells in vitro using terahertz ATR spectroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:2380-2392. [PMID: 35519255 PMCID: PMC9045931 DOI: 10.1364/boe.452952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/12/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
In this work, we report that the effect of bioactive constituent on living glioma cells can be evaluated using terahertz time-domain attenuated total reflection (THz TD-ATR) spectroscopy in a label-free, non-invasive, and fast manner. The measured THz absorption coefficient of human glioma cells (U87) in cell culture media increases with ginsenoside Rg3 (G-Rg3) concentration in the range from 0 to 50 µM, which can be interpreted as that G-Rg3 deteriorated the cellular state. This is supported either by the cell growth inhibition rate measured using a conventional cell viability test kit or by the cellular morphological changes observed with fluorescence microscopy. These results verify the effectiveness of using the THz TD-ATR spectroscopy to detect the action of G-Rg3 on glioma cells in vitro. The demonstrated technique thus opens a new route to assessing the efficacy of bioactive constituents on cells or helping screen cell-targeted drugs.
Collapse
Affiliation(s)
- Yunsheng Liao
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Equal contributors
| | - Mingkun Zhang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Equal contributors
| | - Mingjie Tang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Ligang Chen
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xueqin Li
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhongdong Liu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Huabin Wang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
13
|
Mu N, Yang C, Xu D, Wang S, Ma K, Lai Y, Guo P, Zhang S, Wang Y, Feng H, Chen T, Yao J. Molecular pathological recognition of freshly excised human glioma using terahertz ATR spectroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:222-236. [PMID: 35154866 PMCID: PMC8803014 DOI: 10.1364/boe.445111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 06/14/2023]
Abstract
The diagnosis and treatment of glioma depends greatly on the rapid extraction of molecular pathological features. In this study, human brain tumor tissues of different grades were analyzed using terahertz (THz) attenuated total reflectance (ATR) time-domain spectroscopy. Substantial differences in THz parameters were observed between paracarcinoma tissue and grade I-IV gliomas, Furthermore, the difference of THz absorption coefficient increases with the increase of THz frequency. It was also demonstrated that the isocitrate dehydrogenase (IDH) mutant and wild-type glioma tissues can be well distinguished using THz spectroscopy. Therefore, THz ATR spectroscopy can realize molecular typing recognition based on molecular pathology. This will provide a theoretical basis for developing intraoperative real-time glioma recognition and diagnosis technology.
Collapse
Affiliation(s)
- Ning Mu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Contributed equally
| | - Chuanyan Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Contributed equally
| | - Degang Xu
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Shi Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kang Ma
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ying Lai
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peiwen Guo
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shuixian Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yuye Wang
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianquan Yao
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Zhou J, Wang X, Wang Y, Huang G, Yang X, Zhang Y, Xiong Y, Liu L, Zhao X, Fu W. A novel THz molecule-selective sensing strategy in aqueous environments: THz-ATR spectroscopy integrated with a smart hydrogel. Talanta 2021; 228:122213. [PMID: 33773748 DOI: 10.1016/j.talanta.2021.122213] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 01/29/2023]
Abstract
Terahertz (THz) spectroscopy, with fascinating advantages for biomedical applications, is still in its infancy in terms of the selective detection of aqueous biomolecules because the strong absorption of solvent water always obscures the THz spectroscopic features of biomolecules. Nevertheless, solvent water is not a passive spectator but a useful indicator, as this proposed strategy describes. This strategy utilizes THz attenuated total reflection (THz-ATR) spectroscopy to probe the glucose-induced hydration state changes of smart hydrogels for label-free and selective detection of aqueous glucose. A notable dramatic increase in both the THz absorption coefficient and hydration state (calculated by weighing) of the smart hydrogel was observed with increasing aqueous glucose concentration, which was further verified by a simple two-component model. For aqueous glucose sensing, this method surpasses individual THz-ATR devices and exhibits suitable sensitivity, ideal selectivity and excellent reusability. Moreover, the proposed strategy may provide an alternative option for the selective detection of various aqueous molecules by THz spectroscopy.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xuemei Wang
- Department of Laboratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
| | - Yunxia Wang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Guorong Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Zhang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yu Xiong
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lu Liu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|