1
|
Etrych T, Janoušková O, Chytil P. Fluorescence Imaging as a Tool in Preclinical Evaluation of Polymer-Based Nano-DDS Systems Intended for Cancer Treatment. Pharmaceutics 2019; 11:E471. [PMID: 31547308 PMCID: PMC6781319 DOI: 10.3390/pharmaceutics11090471] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 01/04/2023] Open
Abstract
Targeted drug delivery using nano-sized carrier systems with targeting functions to malignant and inflammatory tissue and tailored controlled drug release inside targeted tissues or cells has been and is still intensively studied. A detailed understanding of the correlation between the pharmacokinetic properties and structure of the nano-sized carrier is crucial for the successful transition of targeted drug delivery nanomedicines into clinical practice. In preclinical research in particular, fluorescence imaging has become one of the most commonly used powerful imaging tools. Increasing numbers of suitable fluorescent dyes that are excitable in the visible to near-infrared (NIR) wavelengths of the spectrum and the non-invasive nature of the method have significantly expanded the applicability of fluorescence imaging. This chapter summarizes non-invasive fluorescence-based imaging methods and discusses their potential advantages and limitations in the field of drug delivery, especially in anticancer therapy. This chapter focuses on fluorescent imaging from the cellular level up to the highly sophisticated three-dimensional imaging modality at a systemic level. Moreover, we describe the possibility for simultaneous treatment and imaging using fluorescence theranostics and the combination of different imaging techniques, e.g., fluorescence imaging with computed tomography.
Collapse
Affiliation(s)
- Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic.
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
2
|
Nouizi F, Kwong TC, Ruiz J, Cho J, Chan YW, Ikemura K, Erkol H, Sampathkumaran U, Gulsen G. A thermo-sensitive fluorescent agent based method for excitation light leakage rejection for fluorescence molecular tomography. Phys Med Biol 2019; 64:035007. [PMID: 30561380 DOI: 10.1088/1361-6560/aaf96d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fluorescence molecular tomography (FMT) is widely used in preclinical oncology research. FMT is the only imaging technique able to provide 3D distribution of fluorescent probes within thick highly scattering media. However, its integration into clinical medicine has been hampered by its low spatial resolution caused by the undetermined and ill-posed nature of its reconstruction algorithm. Another major factor degrading the quality of FMT images is the large backscattered excitation light component leaking through the rejection filters and coinciding with the weak fluorescent signal arising from a low tissue fluorescence concentration. In this paper, we present a new method based on the use of a novel thermo-sensitive fluorescence probe. In fact, the excitation light leakage is accurately estimated from a set of measurements performed at different temperatures and then is corrected for in the tomographic data. The obtained results show a considerable improvement in both spatial resolution and quantitative accuracy of FMT images due to the proper correction of fluorescent signals.
Collapse
Affiliation(s)
- Farouk Nouizi
- Department of Radiological Sciences, Tu and Yuen Center for Functional Onco-Imaging, University of California, Irvine, CA 92697, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Mazzocco C, Fracasso G, Germain-Genevois C, Dugot-Senant N, Figini M, Colombatti M, Grenier N, Couillaud F. In vivo imaging of prostate cancer using an anti-PSMA scFv fragment as a probe. Sci Rep 2016; 6:23314. [PMID: 26996325 PMCID: PMC4800420 DOI: 10.1038/srep23314] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/04/2016] [Indexed: 12/16/2022] Open
Abstract
We aimed to evaluate a fluorescent-labeled single chain variable fragment (scFv) of the anti-PSMA antibody as a specific probe for the detection of prostate cancer by in vivo fluorescence imaging. An orthotopic model of prostate cancer was generated by injecting LNCaP cells into the prostate lobe. ScFvD2B, a high affinity anti-PSMA antibody fragment, was labeled using a near-infrared fluorophore to generate a specific imaging probe (X770-scFvD2B). PSMA-unrelated scFv-X770 was used as a control. Probes were injected intravenously into mice with prostate tumors and fluorescence was monitored in vivo by fluorescence molecular tomography (FMT). In vitro assays showed that X770-scFvD2B specifically bound to PSMA and was internalized in PSMA-expressing LNCaP cells. After intravenous injection, X770-scFvD2B was detected in vivo by FMT in the prostate region. On excised prostates the scFv probe co-localized with the cancer cells and was found in PSMA-expressing cells. The PSMA-unrelated scFv used as a control did not label the prostate cancer cells. Our data demonstrate that scFvD2B is a high affinity contrast agent for in vivo detection of PSMA-expressing cells in the prostate. NIR-labeled scFvD2B could thus be further developed as a clinical probe for imaging-guided targeted biopsies.
Collapse
Affiliation(s)
- Claire Mazzocco
- CNRS UMS 3428 and Univ. Bordeaux, 146 rue Léo Saignat, F33076 Bordeaux
| | | | | | - Nathalie Dugot-Senant
- Service d'Histologie INSERM US005, Univ. Bordeaux, 146 rue Léo Saignat, F33076 Bordeaux
| | - Mariangela Figini
- Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Instituto Nazionale dei Tumori, Milano, Italy
| | | | - Nicolas Grenier
- Service d'Imagerie Diagnostique et Interventionnelle de l'Adulte, Groupe Hospitalier Pellegrin, Place Amélie Raba-Léon - F 33076 BORDEAUX Cedex.,Univ. Bordeaux, Imagerie Moléculaire et Thérapies Innovantes en Oncologie (IMOTION), 146 rue Léo Saignat, F33076 Bordeaux
| | - Franck Couillaud
- Univ. Bordeaux, Imagerie Moléculaire et Thérapies Innovantes en Oncologie (IMOTION), 146 rue Léo Saignat, F33076 Bordeaux
| |
Collapse
|
4
|
Fluorescence optical imaging in anticancer drug delivery. J Control Release 2016; 226:168-81. [PMID: 26892751 DOI: 10.1016/j.jconrel.2016.02.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 12/21/2022]
Abstract
In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography.
Collapse
|
5
|
Li B, Maafi F, Berti R, Pouliot P, Rhéaume E, Tardif JC, Lesage F. Hybrid FMT-MRI applied to in vivo atherosclerosis imaging. BIOMEDICAL OPTICS EXPRESS 2014; 5:1664-76. [PMID: 24877023 PMCID: PMC4026902 DOI: 10.1364/boe.5.001664] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/24/2014] [Accepted: 04/24/2014] [Indexed: 05/20/2023]
Abstract
Combining Fluorescent Molecular Tomography (FMT) with anatomical imaging, e.g. MRI facilitates interpreting functional information. Furthermore, using a heterogeneous model for light propagation has been shown in simulations to be superior to homogeneous modeling to quantify fluorescence. Here, we present a combined FMT-MRI system and apply it to heart and aorta molecular imaging, a challenging area due to strong tissue heterogeneity and the presence of air-voids due to lungs. First investigating performance in a phantom and mouse corpse, the MRI-enabled heterogeneous models resulted in an improved quantification of fluorescence reconstructions. The system was then used in mice for in vivo atherosclerosis molecular imaging. Results show that, when using the heterogeneous model, reconstructions were in agreement with the ex vivo measurements. Therefore, the proposed system might serve as a powerful imaging tool for atherosclerosis in mice.
Collapse
Affiliation(s)
- Baoqiang Li
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montreal, QC, H3C 3A7, Canada
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada
| | - Foued Maafi
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada
| | - Romain Berti
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada
| | - Philippe Pouliot
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montreal, QC, H3C 3A7, Canada
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada
| | - Eric Rhéaume
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada
| | | | - Frederic Lesage
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montreal, QC, H3C 3A7, Canada
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada
| |
Collapse
|
6
|
Grabtchak S, Callaghan KB, Whelan WM. Tagging photons with gold nanoparticles as localized absorbers in optical measurements in turbid media. BIOMEDICAL OPTICS EXPRESS 2013; 4:2989-3006. [PMID: 24409396 PMCID: PMC3862156 DOI: 10.1364/boe.4.002989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 06/03/2023]
Abstract
We analyze a role of a localized inclusion as a probe for spatial distributions of migrating photons in turbid media. We present new experimental data and two-dimensional analysis of radiance detection of a localized absorptive inclusion formed by gold nanoparticles in Intralipid-1% when the target is translated along the line connecting the light source and detector. Data are analyzed using the novel analytical expression for the relative angular photon distribution function for radiance developed by extending the perturbation approach for fluence. Obtained photon maps allow predicting conditions for detectability of inclusions for which proximity to the detector is essential.
Collapse
Affiliation(s)
- Serge Grabtchak
- Department of Physics, University of Prince Edward Island, Charlottetown, PEI C1A4P3, Canada
- Departments of Electrical and Computer Engineering, and Physics, Dalhousie University, Halifax, NS B3H3J5, Canada
| | - Kristen B. Callaghan
- Department of Physics, University of Prince Edward Island, Charlottetown, PEI C1A4P3, Canada
| | - William M. Whelan
- Department of Physics, University of Prince Edward Island, Charlottetown, PEI C1A4P3, Canada
- Atlantic Veterinary College, Charlottetown, PEI C1A4P3, Canada
| |
Collapse
|
7
|
Lin Y, Ghijsen M, Nalcioglu O, Gulsen G. In vivo validation of quantitative frequency domain fluorescence tomography. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:126021. [PMID: 23323291 PMCID: PMC3525318 DOI: 10.1117/1.jbo.17.12.126021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We have developed a hybrid frequency domain fluorescence tomography and magnetic resonance imaging system (MRI) for small animal imaging. The main purpose of this system is to obtain quantitatively accurate fluorescence concentration and lifetime images using a multi-modality approach. In vivo experiments are undertaken to evaluate the system. We compare the recovered fluorescence parameters with and without MRI structural a priori information. In addition, we compare two optical background heterogeneity correction methods: Born normalization and utilizing diffuse optical tomography (DOT) functional a priori information. The results show that the concentration and lifetime of a 4.2-mm diameter indocyanine green inclusion located 15 mm deep inside a rat can be recovered with less than a 5% error when functional a priori information from DOT and structural a priori information from MRI are utilized.
Collapse
Affiliation(s)
- Yuting Lin
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California 92697
| | - Michael Ghijsen
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California 92697
| | - Orhan Nalcioglu
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California 92697
| | - Gultekin Gulsen
- University of California, Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, 164 Irvine Hall, Irvine, California 92697
- Address all correspondence to: Gultekin Gulsen, University of California, Tu and Yuen Center for Functional Onco-Imaging, 164 Irvine Hall, Irvine, California 92697. Tel: 949 824 6557; Fax: 949 824 3481; E-mail:
| |
Collapse
|
8
|
Mérian J, Gravier J, Navarro F, Texier I. Fluorescent nanoprobes dedicated to in vivo imaging: from preclinical validations to clinical translation. Molecules 2012; 17:5564-91. [PMID: 22576228 PMCID: PMC6268987 DOI: 10.3390/molecules17055564] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/06/2012] [Accepted: 05/07/2012] [Indexed: 11/30/2022] Open
Abstract
With the fast development, in the last ten years, of a large choice of set-ups dedicated to routine in vivo measurements in rodents, fluorescence imaging techniques are becoming essential tools in preclinical studies. Human clinical uses for diagnostic and image-guided surgery are also emerging. In comparison to low-molecular weight organic dyes, the use of fluorescent nanoprobes can improve both the signal sensitivity (better in vivo optical properties) and the fluorescence biodistribution (passive “nano” uptake in tumours for instance). A wide range of fluorescent nanoprobes have been designed and tested in preclinical studies for the last few years. They will be reviewed and discussed considering the obstacles that need to be overcome for their potential everyday use in clinics. The conjugation of fluorescence imaging with the benefits of nanotechnology should open the way to new medical applications in the near future.
Collapse
Affiliation(s)
| | | | | | - Isabelle Texier
- Author to whom correspondence should be addressed; ; Tel.: +33-438-784-670; Fax: +33-438-785-787
| |
Collapse
|
9
|
Tichauer KM, Holt RW, El-Ghussein F, Zhu Q, Dehghani H, Leblond F, Pogue BW. Imaging workflow and calibration for CT-guided time-domain fluorescence tomography. BIOMEDICAL OPTICS EXPRESS 2011; 2:3021-36. [PMID: 22076264 PMCID: PMC3207372 DOI: 10.1364/boe.2.003021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/17/2011] [Accepted: 09/22/2011] [Indexed: 05/20/2023]
Abstract
In this study, several key optimization steps are outlined for a non-contact, time-correlated single photon counting small animal optical tomography system, using simultaneous collection of both fluorescence and transmittance data. The system is presented for time-domain image reconstruction in vivo, illustrating the sensitivity from single photon counting and the calibration steps needed to accurately process the data. In particular, laser time- and amplitude-referencing, detector and filter calibrations, and collection of a suitable instrument response function are all presented in the context of time-domain fluorescence tomography and a fully automated workflow is described. Preliminary phantom time-domain reconstructed images demonstrate the fidelity of the workflow for fluorescence tomography based on signal from multiple time gates.
Collapse
Affiliation(s)
- Kenneth M. Tichauer
- Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755, USA
| | - Robert W. Holt
- Department of Physics and Astronomy, Dartmouth College, NH 03755, USA
| | - Fadi El-Ghussein
- Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755, USA
| | - Qun Zhu
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Hamid Dehghani
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Frederic Leblond
- Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755, USA
- Department of Physics and Astronomy, Dartmouth College, NH 03755, USA
| |
Collapse
|