1
|
Zulina N, Caravaca O, Liao G, Gravelyn S, Schmitt M, Badu K, Heroin L, Gora MJ. Colon phantoms with cancer lesions for endoscopic characterization with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:955-968. [PMID: 33680552 PMCID: PMC7901311 DOI: 10.1364/boe.402081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 05/31/2023]
Abstract
Optical coherence tomography (OCT) is a growing imaging technique for real-time early diagnosis of digestive system diseases. As with other well-established medical imaging modalities, OCT requires validated imaging performance and standardized test methods for performance assessment. A major limitation in the development and testing of new imaging technologies is the lack of models for simultaneous clinical procedure emulation and characterization of healthy and diseased tissues. Currently, the former can be tested in large animal models and the latter can be tested in small animal disease models or excised human biopsy samples. In this study, a 23 cm by 23 cm optical phantom was developed to mimic the thickness and near-infrared optical properties of each anatomical layer of a human colon, as well as the surface topography of colorectal polyps and visual appearance compatible with white light endoscopy.
Collapse
Affiliation(s)
- Natalia Zulina
- ICube Laboratory, CNRS, Strasbourg University, 1, Place de l'Hôpital - 67091 Strasbourg Cedex, France
| | - Oscar Caravaca
- ICube Laboratory, CNRS, Strasbourg University, 1, Place de l'Hôpital - 67091 Strasbourg Cedex, France
| | - Guiqiu Liao
- ICube Laboratory, CNRS, Strasbourg University, 1, Place de l'Hôpital - 67091 Strasbourg Cedex, France
| | - Sara Gravelyn
- ICube Laboratory, CNRS, Strasbourg University, 1, Place de l'Hôpital - 67091 Strasbourg Cedex, France
| | - Morgane Schmitt
- ICube Laboratory, CNRS, Strasbourg University, 1, Place de l'Hôpital - 67091 Strasbourg Cedex, France
| | - Keshia Badu
- ICube Laboratory, CNRS, Strasbourg University, 1, Place de l'Hôpital - 67091 Strasbourg Cedex, France
| | - Lucile Heroin
- ICube Laboratory, CNRS, Strasbourg University, 1, Place de l'Hôpital - 67091 Strasbourg Cedex, France
- Gastroenterology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Michalina J Gora
- ICube Laboratory, CNRS, Strasbourg University, 1, Place de l'Hôpital - 67091 Strasbourg Cedex, France
| |
Collapse
|
2
|
Yoon C, Qi Y, Mestre H, Canavesi C, Marola OJ, Cogliati A, Nedergaard M, Libby RT, Rolland JP. Gabor domain optical coherence microscopy combined with laser scanning confocal fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:6242-6257. [PMID: 31853397 PMCID: PMC6913392 DOI: 10.1364/boe.10.006242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
We report on the development of fluorescence Gabor domain optical coherence microscopy (Fluo GD-OCM), a combination of GD-OCM with laser scanning confocal fluorescence microscopy (LSCFM) for synchronous micro-structural and fluorescence imaging. The dynamic focusing capability of GD-OCM provided the adaptive illumination environment for both modalities without any mechanical movement. Using Fluo GD-OCM, we imaged ex vivo DsRed-expressing cells in the brain of a transgenic mouse, as well as Cy3-labeled ganglion cells and Cy3-labeled astrocytes from a mouse retina. The self-registration of images taken by the two different imaging modalities showed the potential for a correlative study of subjects and double identification of the target.
Collapse
Affiliation(s)
- Changsik Yoon
- The Institute of Optics, University of Rochester, Wilmot Building, Rochester, New York 14627, USA
| | - Yue Qi
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall, Rochester, New York 14627, USA
| | - Humberto Mestre
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Cristina Canavesi
- LighTopTech Corp., 150 Lucius Gordon Dr., Ste 201, West Henrietta, New York 14586, USA
| | - Olivia J. Marola
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Andrea Cogliati
- LighTopTech Corp., 150 Lucius Gordon Dr., Ste 201, West Henrietta, New York 14586, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Richard T. Libby
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Jannick P. Rolland
- The Institute of Optics, University of Rochester, Wilmot Building, Rochester, New York 14627, USA
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall, Rochester, New York 14627, USA
- LighTopTech Corp., 150 Lucius Gordon Dr., Ste 201, West Henrietta, New York 14586, USA
| |
Collapse
|
3
|
Welge WA, Barton JK. In vivo endoscopic Doppler optical coherence tomography imaging of the colon. Lasers Surg Med 2016; 49:249-257. [PMID: 27546786 DOI: 10.1002/lsm.22578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Colorectal cancer (CRC) remains the second deadliest cancer in the United States. Several screening methods exist; however, detection of small polyps remains a challenge. Optical coherence tomography (OCT) has been demonstrated to be capable of detecting lesions as small as 1 mm in the mouse colon, but detection is based on measuring a doubling of the mucosa thickness. The colon microvasculature may be an attractive biomarker of early tumor development because tumor vessels are characterized by irregular structure and dysfunction. Our goal was to develop an endoscopic method of detecting and segmenting colon vessels using Doppler OCT to enable future studies for improving early detection and development of novel chemopreventive agents. METHOD We conducted in vivo colon imaging in an azoxymethane (AOM)-treated mouse model of colorectal cancer using a miniature endoscope and a swept-source OCT system at 1,040 nm with a 16 kHz sweep rate. We applied the Kasai autocorrelation algorithm to laterally oversampled OCT B-scans to resolve vascular flow in the mucosa and submucosa. Vessels were segmented by applying a series of image processing steps: (i) intensity thresholding; (ii) two-dimensional matched filtering; and (iii) histogram segmentation. RESULTS We observed differences in the vessels sizes and spatial distribution in a mature adenoma compared to surrounding undiseased tissue and compared the results with histology. We also imaged flow in four young mice (two AOM-treated and two control) showing no significant differences, which is expected so early after carcinogen exposure. We also present flow images of adenoma in a living mouse and a euthanized mouse to demonstrate that no flow is detected after euthanasia. CONCLUSION We present, to the best of our knowledge, the first Doppler OCT images of in vivo mouse colon collected with a fiber-based endoscope. We also describe a fast and robust image processing method for segmenting vessels in the colon. These results suggest that Doppler OCT is a promising imaging modality for vascular imaging in the colon that requires no exogenous contrast agents. Lasers Surg. Med. 49:249-257, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Weston A Welge
- College of Optical Sciences, The University of Arizona, Tucson 85721, Arizona
| | - Jennifer K Barton
- College of Optical Sciences, The University of Arizona, Tucson 85721, Arizona.,Department of Biomedical Engineering, The University of Arizona, Tucson 85721, Arizona
| |
Collapse
|
4
|
Pahlevaninezhad H, Lee AMD, Shaipanich T, Raizada R, Cahill L, Hohert G, Yang VXD, Lam S, MacAulay C, Lane P. A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2014; 5:2978-87. [PMID: 25401011 PMCID: PMC4230860 DOI: 10.1364/boe.5.002978] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 05/06/2023]
Abstract
We present a power-efficient fiber-based imaging system capable of co-registered autofluorescence imaging and optical coherence tomography (AF/OCT). The system employs a custom fiber optic rotary joint (FORJ) with an embedded dichroic mirror to efficiently combine the OCT and AF pathways. This three-port wavelength multiplexing FORJ setup has a throughput of more than 83% for collected AF emission, significantly more efficient compared to previously reported fiber-based methods. A custom 900 µm diameter catheter ‒ consisting of a rotating lens assembly, double-clad fiber (DCF), and torque cable in a stationary plastic tube ‒ was fabricated to allow AF/OCT imaging of small airways in vivo. We demonstrate the performance of this system ex vivo in resected porcine airway specimens and in vivo in human on fingers, in the oral cavity, and in peripheral airways.
Collapse
Affiliation(s)
- Hamid Pahlevaninezhad
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Anthony M. D. Lee
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Tawimas Shaipanich
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Rashika Raizada
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Lucas Cahill
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Geoffrey Hohert
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Victor X. D. Yang
- Biophotonics and Bioengineering Laboratory, Electrical and Computer Engineering, Ryerson University, Toronto, ON, Canada
| | - Stephen Lam
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Calum MacAulay
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Pierre Lane
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| |
Collapse
|
5
|
Pahlevaninezhad H, Lee AMD, Lam S, MacAulay C, Lane PM. Coregistered autofluorescence-optical coherence tomography imaging of human lung sections. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:36022. [PMID: 24687614 DOI: 10.1117/1.jbo.19.3.036022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/03/2014] [Indexed: 05/20/2023]
Abstract
Autofluorescence (AF) imaging can provide valuable information about the structural and metabolic state of tissue that can be useful for elucidating physiological and pathological processes. Optical coherence tomography (OCT) provides high resolution detailed information about tissue morphology. We present coregistered AF-OCT imaging of human lung sections. Adjacent hematoxylin and eosin stained histological sections are used to identify tissue structures observed in the OCT images. Segmentation of these structures in the OCT images allowed determination of relative AF intensities of human lung components. Since the AF imaging was performed on tissue sections perpendicular to the airway axis, the results show the AF signal originating from the airway wall components free from the effects of scattering and absorption by overlying layers as is the case during endoscopic imaging. Cartilage and dense connective tissue (DCT) are found to be the dominant fluorescing components with the average cartilage AF intensity about four times greater than that of DCT. The epithelium, lamina propria, and loose connective tissue near basement membrane generate an order of magnitude smaller AF signal than the cartilage fluorescence.
Collapse
|
6
|
Enhanced imaging in the GI tract: spectroscopy and optical coherence tomography. Gastrointest Endosc 2013; 78:568-73. [PMID: 24054739 DOI: 10.1016/j.gie.2013.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 02/07/2023]
|