1
|
Salimi M, Tabatabaei N, Villiger M. Artificial neural network for enhancing signal-to-noise ratio and contrast in photothermal optical coherence tomography. Sci Rep 2024; 14:10264. [PMID: 38704427 PMCID: PMC11069506 DOI: 10.1038/s41598-024-60682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
Optical coherence tomography (OCT) is a medical imaging method that generates micron-resolution 3D volumetric images of tissues in-vivo. Photothermal (PT)-OCT is a functional extension of OCT with the potential to provide depth-resolved molecular information complementary to the OCT structural images. PT-OCT typically requires long acquisition times to measure small fluctuations in the OCT phase signal. Here, we use machine learning with a neural network to infer the amplitude of the photothermal phase modulation from a short signal trace, trained in a supervised fashion with the ground truth signal obtained by conventional reconstruction of the PT-OCT signal from a longer acquisition trace. Results from phantom and tissue studies show that the developed network improves signal to noise ratio (SNR) and contrast, enabling PT-OCT imaging with short acquisition times and without any hardware modification to the PT-OCT system. The developed network removes one of the key barriers in translation of PT-OCT (i.e., long acquisition time) to the clinic.
Collapse
Affiliation(s)
- Mohammadhossein Salimi
- Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada
| | - Nima Tabatabaei
- Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada.
- Center for Vision Research, York University, Toronto, ON, M3J 1P3, Canada.
| | - Martin Villiger
- Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada.
- Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
The Challenges of O 2 Detection in Biological Fluids: Classical Methods and Translation to Clinical Applications. Int J Mol Sci 2022; 23:ijms232415971. [PMID: 36555613 PMCID: PMC9786805 DOI: 10.3390/ijms232415971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dissolved oxygen (DO) is deeply involved in preserving the life of cellular tissues and human beings due to its key role in cellular metabolism: its alterations may reflect important pathophysiological conditions. DO levels are measured to identify pathological conditions, explain pathophysiological mechanisms, and monitor the efficacy of therapeutic approaches. This is particularly relevant when the measurements are performed in vivo but also in contexts where a variety of biological and synthetic media are used, such as ex vivo organ perfusion. A reliable measurement of medium oxygenation ensures a high-quality process. It is crucial to provide a high-accuracy, real-time method for DO quantification, which could be robust towards different medium compositions and temperatures. In fact, biological fluids and synthetic clinical fluids represent a challenging environment where DO interacts with various compounds and can change continuously and dynamically, and further precaution is needed to obtain reliable results. This study aims to present and discuss the main oxygen detection and quantification methods, focusing on the technical needs for their translation to clinical practice. Firstly, we resumed all the main methodologies and advancements concerning dissolved oxygen determination. After identifying the main groups of all the available techniques for DO sensing based on their mechanisms and applicability, we focused on transferring the most promising approaches to a clinical in vivo/ex vivo setting.
Collapse
|
3
|
Fang R, Rubinoff I, Zhang HF. Multiple forward scattering reduces the measured scattering coefficient of whole blood in visible-light optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:4510-4527. [PMID: 36187273 PMCID: PMC9484418 DOI: 10.1364/boe.459607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 05/10/2023]
Abstract
The optical properties of blood encode oxygen-dependent information. Noninvasive optical detection of these properties is increasingly desirable to extract biomarkers for tissue health. Recently, visible-light optical coherence tomography (vis-OCT) demonstrated retinal oxygen saturation (sO2) measurements by inversely measuring the oxygen-dependent absorption and scattering coefficients of whole blood. However, vis-OCT may be sensitive to optical scattering properties of whole blood, different from those reported in the literature. Incorrect assumptions of such properties can add additional uncertainties or biases to vis-OCT's sO2 model. This work investigates whole blood's scattering coefficient measured by vis-OCT. Using Monte Carlo simulation of a retinal vessel, we determined that vis-OCT almost exclusively detects multiple-scattered photons in whole blood. Meanwhile, photons mostly forward scatter in whole blood within the visible spectral range, allowing photons to maintain ballistic paths and penetrate deeply, leading to a reduction in the measured scattering coefficient. We defined a scattering scaling factor (SSF) to account for such a reduction and found that SSF varied with measurement conditions, such as numerical aperture, depth resolution, and depth selection. We further experimentally validated SSF in ex vivo blood phantoms with pre-set sO2 levels and in the human retina, both of which agreed well with our simulation.
Collapse
Affiliation(s)
- Raymond Fang
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208, USA
- These authors contributed equally to this work
| | - Ian Rubinoff
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208, USA
- These authors contributed equally to this work
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208, USA
| |
Collapse
|
4
|
Salimi MH, Villiger M, Tabatabaei N. Three-dimensional opto-thermo-mechanical model for predicting photo-thermal optical coherence tomography responses in multilayer geometries. BIOMEDICAL OPTICS EXPRESS 2022; 13:3416-3433. [PMID: 35781956 PMCID: PMC9208589 DOI: 10.1364/boe.454491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Photothermal optical coherence tomography (PT-OCT) is a functional extension of OCT with the ability to generate qualitative maps of molecular absorptions co-registered with the micron-resolution structural tomograms of OCT. Obtaining refined insight into chemical information from PT-OCT images, however, requires solid understanding of the multifactorial physics behind generation of PT-OCT signals and their dependence on system and sample parameters. Such understanding is needed to decouple the various physical effects involved in the PT-OCT signal to obtain more accurate insight into sample composition. In this work, we propose an analytical model that considers the opto-thermo-mechanical properties of multi-layered samples in 3-D space, eliminating several assumptions that have been limiting previous PT-OCT models. In parametric studies, the model results are compared with experimental signals to investigate the effect of sample and system parameters on the acquired signals. The proposed model and the presented findings open the door for: 1) better understanding of the effects of system parameters and tissue opto-thermo-mechanical properties on experimental signals; 2) informed optimization of experimentation strategies based on sample and system parameters; 3) guidance of downstream signal processing for predicting tissue molecular composition.
Collapse
Affiliation(s)
- Mohammad Hossein Salimi
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
| | - Martin Villiger
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
- Harvard Medical School, Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, USA
| | - Nima Tabatabaei
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
| |
Collapse
|
5
|
Wu J, Wu N, Tang P, Lin J, Lian Y, Tang Z. Pulse photothermal optical coherence tomography for multimodal hemodynamic imaging. OPTICS LETTERS 2021; 46:5635-5638. [PMID: 34780424 DOI: 10.1364/ol.442552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
To realize multimodal hemodynamic imaging, pulse photothermal optical coherence tomography (P-PTOCT) is proposed in this Letter to solve the separation problem of photothermal phase and Doppler phase, which is difficult to solve in traditional PTOCT. This technique can obtain blood flow distribution, light absorption distribution, and concentration images simultaneously. Based on the difference between pulse photothermal phase and Doppler phase, we propose an even number differential demodulation algorithm that can separate the photothermal phase and Doppler phase from the same scanning data set. The separated photothermal phase can characterize the trend of drug concentration, which provides the possibility for quantitative measurement of plasma concentration. The combination of photothermal phase and Doppler phase is helpful for potential clinical research on hemodynamics of cerebral ischemia and provides a technical reference for the rapid acquisition of perfusion volume and plasma concentration at one time.
Collapse
|
6
|
Salimi MH, Villiger M, Tabatabaei N. Transient-mode photothermal optical coherence tomography. OPTICS LETTERS 2021; 46:5703-5706. [PMID: 34780441 PMCID: PMC10801791 DOI: 10.1364/ol.443987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Photothermal optical coherence tomography (PT-OCT) is an emerging extension of OCT, which forms images based on both scattering and absorption of light. The speed of PT-OCT, however, has been limited by the necessity for lock-in detection with extensive temporal sampling of the sample's PT response. Here, we demonstrate transient-mode PT-OCT (TM-PT-OCT), which increases the effective A-line rate by orders of magnitude from 10-100 Hz to 1.5-7.5 kHz, by interrogating the sample's transient thermal response to a single diode laser pulse. Functional imaging of moving samples with TM-PT-OCT at video rate is also presented. This significant improvement in imaging speed is expected to open the door for downstream integration of PT-OCT in clinical systems for in vivo imaging.
Collapse
Affiliation(s)
- Mohammad Hossein Salimi
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
| | - Martin Villiger
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
- Harvard Medical School, Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, United States
| | - Nima Tabatabaei
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
| |
Collapse
|
7
|
Salimi M, Villiger M, Tabatabaei N. Effects of lipid composition on photothermal optical coherence tomography signals. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200283LR. [PMID: 33369310 PMCID: PMC7757902 DOI: 10.1117/1.jbo.25.12.120501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/01/2020] [Indexed: 05/02/2023]
Abstract
SIGNIFICANCE Photothermal optical coherence tomography (PT-OCT) has the promise to offer structural images coregistered with chemical composition information, which can offer a significant impact in early detection of diseases such as atherosclerosis. AIM We take the first step in understanding the relation between PT-OCT signals and the endogenous tissue composition by considering the interplay between the opto-thermo-physical properties of tissue as a function of its lipid composition and the ensuing effects on the PT-OCT signals. APPROACH Multiparameter theoretical estimates for PT-OCT signal as a function of composition in a two-component lipid-water model are derived and discussed. Experimental data from various concentrations of lipid in the form of droplets and injections under bovine cardiac muscle align with theoretical predictions. RESULTS Theoretical and experimental results suggest that the variations of heat capacity and mass density with tissue composition significantly contribute to the amount of optical path length difference measured by OCT phase. CONCLUSION PT-OCT has the potential to offer key insights into the chemical composition of the subsurface lipid pools in tissue; however, the interpretation of results needs to be carried out by keeping the nonlinear interplay between the tissue of opto-thermo-physical properties and PT-OCT signals in mind.
Collapse
Affiliation(s)
- Mohammadhossein Salimi
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
| | - Martin Villiger
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
- Harvard Medical School, Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, United States
| | - Nima Tabatabaei
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
| |
Collapse
|
8
|
Liu R, Cheng S, Tian L, Yi J. Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification. LIGHT, SCIENCE & APPLICATIONS 2019; 8:102. [PMID: 31754429 PMCID: PMC6864044 DOI: 10.1038/s41377-019-0216-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 05/06/2023]
Abstract
Measurement of blood oxygen saturation (sO2) by optical imaging oximetry provides invaluable insight into local tissue functions and metabolism. Despite different embodiments and modalities, all label-free optical-imaging oximetry techniques utilize the same principle of sO2-dependent spectral contrast from haemoglobin. Traditional approaches for quantifying sO2 often rely on analytical models that are fitted by the spectral measurements. These approaches in practice suffer from uncertainties due to biological variability, tissue geometry, light scattering, systemic spectral bias, and variations in the experimental conditions. Here, we propose a new data-driven approach, termed deep spectral learning (DSL), to achieve oximetry that is highly robust to experimental variations and, more importantly, able to provide uncertainty quantification for each sO2 prediction. To demonstrate the robustness and generalizability of DSL, we analyse data from two visible light optical coherence tomography (vis-OCT) setups across two separate in vivo experiments on rat retinas. Predictions made by DSL are highly adaptive to experimental variabilities as well as the depth-dependent backscattering spectra. Two neural-network-based models are tested and compared with the traditional least-squares fitting (LSF) method. The DSL-predicted sO2 shows significantly lower mean-square errors than those of the LSF. For the first time, we have demonstrated en face maps of retinal oximetry along with a pixel-wise confidence assessment. Our DSL overcomes several limitations of traditional approaches and provides a more flexible, robust, and reliable deep learning approach for in vivo non-invasive label-free optical oximetry.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Shiyi Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215 USA
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215 USA
| | - Ji Yi
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215 USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA 02118 USA
| |
Collapse
|
9
|
Yanina IY, Popov AP, Bykov AV, Meglinski IV, Tuchin VV. Monitoring of temperature-mediated phase transitions of adipose tissue by combined optical coherence tomography and Abbe refractometry. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 29297209 DOI: 10.1117/1.jbo.23.1.016003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Observation of temperature-mediated phase transitions between lipid components of the adipose tissues has been performed by combined use of the Abbe refractometry and optical coherence tomography. The phase transitions of the lipid components were clearly observed in the range of temperatures from 24°C to 60°C, and assessed by quantitatively monitoring the changes of the refractive index of 1- to 2-mm-thick porcine fat tissue slices. The developed approach has a great potential as an alternative method for obtaining accurate information on the processes occurring during thermal lipolysis.
Collapse
Affiliation(s)
- Irina Y Yanina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Alexey P Popov
- University of Oulu, Optoelectronics and Measurement Techniques Research Unit, Oulu, Finland
- ITMO University, Terahertz Biomedicine Laboratory, St. Petersburg, Russia
| | - Alexander V Bykov
- University of Oulu, Optoelectronics and Measurement Techniques Research Unit, Oulu, Finland
- ITMO University, Terahertz Biomedicine Laboratory, St. Petersburg, Russia
| | - Igor V Meglinski
- University of Oulu, Optoelectronics and Measurement Techniques Research Unit, Oulu, Finland
- ITMO University, Terahertz Biomedicine Laboratory, St. Petersburg, Russia
- Irkutsk State University, Institute of Biology, Irkutsk, Russia
| | - Valery V Tuchin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
- ITMO University, Laboratory of Femtomedicine, St. Petersburg, Russia
| |
Collapse
|
10
|
Fredriksson I, Saager RB, Durkin AJ, Strömberg T. Evaluation of a pointwise microcirculation assessment method using liquid and multilayered tissue simulating phantoms. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-9. [PMID: 29139245 PMCID: PMC5872620 DOI: 10.1117/1.jbo.22.11.115004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/26/2017] [Indexed: 05/03/2023]
Abstract
A fiber-optic probe-based instrument, designed for assessment of parameters related to microcirculation, red blood cell tissue fraction (fRBC), oxygen saturation (SO2), and speed resolved perfusion, has been evaluated using state-of-the-art tissue phantoms. The probe integrates diffuse reflectance spectroscopy (DRS) at two source-detector separations and laser Doppler flowmetry, using an inverse Monte Carlo method for identifying the parameters of a multilayered tissue model. Here, we characterize the accuracy of the DRS aspect of the instrument using (1) liquid blood phantoms containing yeast and (2) epidermis-dermis mimicking solid-layered phantoms fabricated from polydimethylsiloxane, titanium oxide, hemoglobin, and coffee. The root-mean-square (RMS) deviations for fRBC for the two liquid phantoms were 11% and 5.3%, respectively, and 11% for the solid phantoms with highest hemoglobin signatures. The RMS deviation for SO2 was 5.2% and 2.9%, respectively, for the liquid phantoms, and 2.9% for the solid phantoms. RMS deviation for the reduced scattering coefficient (μs'), for the solid phantoms was 15% (475 to 850 nm). For the liquid phantoms, the RMS deviation in average vessel diameter (D) was 1 μm. In conclusion, the skin microcirculation parameters fRBC and SO2, as well as, μs' and D are estimated with reasonable accuracy.
Collapse
Affiliation(s)
- Ingemar Fredriksson
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
- Perimed AB, Stockholm, Sweden
- Address all correspondence to: Ingemar Fredriksson, E-mail:
| | - Rolf B. Saager
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Anthony J. Durkin
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Department of Biomedical Engineering, Irvine, California, United States
| | - Tomas Strömberg
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| |
Collapse
|
11
|
In vivo photothermal optical coherence tomography of endogenous and exogenous contrast agents in the eye. Sci Rep 2017; 7:9228. [PMID: 28835698 PMCID: PMC5569082 DOI: 10.1038/s41598-017-10050-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/02/2017] [Indexed: 11/08/2022] Open
Abstract
Optical coherence tomography (OCT) has become a standard-of-care in retinal imaging. OCT allows non-invasive imaging of the tissue structure but lacks specificity to contrast agents that could be used for in vivo molecular imaging. Photothermal OCT (PT-OCT) is a functional OCT-based technique that has been developed to detect absorbers in a sample. We demonstrate in vivo PT-OCT in the eye for the first time on both endogenous (melanin) and exogenous (gold nanorods) absorbers. Pigmented mice and albino mice (n = 6 eyes) were used to isolate the photothermal signal from the melanin in the retina. Pigmented mice with laser-induced choroidal neovascularization lesions (n = 7 eyes) were also imaged after a systemic injection of gold nanorods to observe their passive accumulation in the retina. This experiment demonstrates the feasibility of PT-OCT to image the distribution of both endogenous and exogenous absorbers in the mouse retina.
Collapse
|
12
|
Lapierre-Landry M, Tucker-Schwartz JM, Skala MC. Depth-resolved analytical model and correction algorithm for photothermal optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:2607-22. [PMID: 27446693 PMCID: PMC4948617 DOI: 10.1364/boe.7.002607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/02/2016] [Accepted: 06/11/2016] [Indexed: 05/03/2023]
Abstract
Photothermal OCT (PT-OCT) is an emerging molecular imaging technique that occupies a spatial imaging regime between microscopy and whole body imaging. PT-OCT would benefit from a theoretical model to optimize imaging parameters and test image processing algorithms. We propose the first analytical PT-OCT model to replicate an experimental A-scan in homogeneous and layered samples. We also propose the PT-CLEAN algorithm to reduce phase-accumulation and shadowing, two artifacts found in PT-OCT images, and demonstrate it on phantoms and in vivo mouse tumors.
Collapse
|
13
|
Roussakis E, Li Z, Nichols AJ, Evans CL. Sauerstoffmessung in der Biomedizin - von der Makro- zur Mikroebene. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Roussakis E, Li Z, Nichols AJ, Evans CL. Oxygen-Sensing Methods in Biomedicine from the Macroscale to the Microscale. Angew Chem Int Ed Engl 2015; 54:8340-62. [DOI: 10.1002/anie.201410646] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/05/2015] [Indexed: 12/15/2022]
|
15
|
Xu X, Teng X. Effect of fibrinogen on blood coagulation detected by optical coherence tomography. Phys Med Biol 2015; 60:4185-95. [PMID: 25955503 DOI: 10.1088/0031-9155/60/10/4185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Our previous work demonstrated that an optical coherence tomography (OCT) technique and the parameter 1/e light penetration depth (d1/e) were able to characterize the whole blood coagulation process in contrast to existing optical tests that are performed on plasma samples. To evaluate the feasibility of the technique for quantifying the effect of fibrinogen (Fbg) on blood coagulation, a dynamic study of d1/e of blood in various Fbg concentrations was performed in static state. Two groups of blood samples of hematocrit (HCT) in 35, 45, and 55% were reconstituted of red blood cells with: 1) treated plasma with its intrinsic Fbg removed and commercial Fbg added (0-8 g L(-1)); and 2) native plasma with commercial Fbg added (0-8 g L(-1)). The results revealed a typical behavior due to coagulation induced by calcium ions and the clotting time is Fbg concentration-dependent. The clotting time was decreased by the increasing amount of Fbg in both groups. Besides, the blood of lower HCT with various levels of Fbg took shorter time to coagulate than that of higher HCT. Consequently, the OCT method is a useful and promising tool for the detection of blood-coagulation processes induced with different Fbg levels.
Collapse
Affiliation(s)
- Xiangqun Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | | |
Collapse
|
16
|
Chong SP, Merkle CW, Leahy C, Radhakrishnan H, Srinivasan VJ. Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography. BIOMEDICAL OPTICS EXPRESS 2015; 6:1429-50. [PMID: 25909026 PMCID: PMC4399681 DOI: 10.1364/boe.6.001429] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/19/2015] [Accepted: 03/14/2015] [Indexed: 05/18/2023]
Abstract
Quantification of chromophore concentrations in reflectance mode remains a major challenge for biomedical optics. Spectroscopic Optical Coherence Tomography (SOCT) provides depth-resolved spectroscopic information necessary for quantitative analysis of chromophores, like hemoglobin, but conventional SOCT analysis methods are applicable only to well-defined specular reflections, which may be absent in highly scattering biological tissue. Here, by fitting of the dynamic scattering signal spectrum in the OCT angiogram using a forward model of light propagation, we quantitatively determine hemoglobin concentrations directly. Importantly, this methodology enables mapping of both oxygen saturation and total hemoglobin concentration, or alternatively, oxyhemoglobin and deoxyhemoglobin concentration, simultaneously. Quantification was verified by ex vivo blood measurements at various pO2 and hematocrit levels. Imaging results from the rodent brain and retina are presented. Confounds including noise and scattering, as well as potential clinical applications, are discussed.
Collapse
|
17
|
Su Y, Yao XS, Li Z, Meng Z, Liu T, Wang L. Measurements of the thermal coefficient of optical attenuation at different depth regions of in vivo human skins using optical coherence tomography: a pilot study. BIOMEDICAL OPTICS EXPRESS 2015; 6:500-13. [PMID: 25780740 PMCID: PMC4354582 DOI: 10.1364/boe.6.000500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 05/18/2023]
Abstract
We present detailed measurement results of optical attenuation's thermal coefficients (referenced to the temperature of the skin surface) in different depth regions of in vivo human forearm skins using optical coherence tomography (OCT). We first design a temperature control module with an integrated optical probe to precisely control the surface temperature of a section of human skin. We propose a method of using the correlation map to identify regions in the skin having strong correlations with the surface temperature of the skin and find that the attenuation coefficient in these regions closely follows the variation of the surface temperature without any hysteresis. We observe a negative thermal coefficient of attenuation in the epidermis. While in dermis, the slope signs of the thermal coefficient of attenuation are different at different depth regions for a particular subject, however, the depth regions with a positive (or negative) slope are different in different subjects. We further find that the magnitude of the thermal coefficient of attenuation coefficient is greater in epidermis than in dermis. We believe the knowledge of such thermal properties of skins is important for several noninvasive diagnostic applications, such as OCT glucose monitoring, and the method demonstrated in this paper is effective in studying the optical and biological properties in different regions of skin.
Collapse
Affiliation(s)
- Ya Su
- Tianjin University, Polarization Research Center, College of Precision Instrument & Opto-electronics Engineering and Key Laboratory of Opto-electronics Information and Technical Science, Ministry of Education, Tianjin 300072,
China
| | - X. Steve Yao
- Tianjin University, Polarization Research Center, College of Precision Instrument & Opto-electronics Engineering and Key Laboratory of Opto-electronics Information and Technical Science, Ministry of Education, Tianjin 300072,
China
- General Photonics Corporation, 5228 Edison Avenue, Chino, California 91710,
USA
| | - Zhihong Li
- Tianjin University, Polarization Research Center, College of Precision Instrument & Opto-electronics Engineering and Key Laboratory of Opto-electronics Information and Technical Science, Ministry of Education, Tianjin 300072,
China
- Suzhou Opto-ring Co. Ltd., Suzhou 215123,
China
| | - Zhuo Meng
- Tianjin University, Polarization Research Center, College of Precision Instrument & Opto-electronics Engineering and Key Laboratory of Opto-electronics Information and Technical Science, Ministry of Education, Tianjin 300072,
China
- Suzhou Opto-ring Co. Ltd., Suzhou 215123,
China
| | - Tiegen Liu
- Tianjin University, Polarization Research Center, College of Precision Instrument & Opto-electronics Engineering and Key Laboratory of Opto-electronics Information and Technical Science, Ministry of Education, Tianjin 300072,
China
| | - Longzhi Wang
- Tianjin University, Polarization Research Center, College of Precision Instrument & Opto-electronics Engineering and Key Laboratory of Opto-electronics Information and Technical Science, Ministry of Education, Tianjin 300072,
China
| |
Collapse
|
18
|
Carrasco-Zevallos O, Shelton RL, Kim W, Pearson J, Applegate BE. In vivo pump-probe optical coherence tomography imaging in Xenopus laevis. JOURNAL OF BIOPHOTONICS 2015; 8:25-35. [PMID: 24282110 PMCID: PMC4955517 DOI: 10.1002/jbio.201300119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/30/2013] [Accepted: 10/30/2013] [Indexed: 05/25/2023]
Abstract
Currently, optical coherence tomography (OCT), is not capable of obtaining molecular information often crucial for identification of disease. To enable molecular imaging with OCT, we have further developed a technique that harnesses transient changes in light absorption in the sample to garner molecular information. A Fourier-domain Pump-Probe OCT (PPOCT) system utilizing a 532 nm pump and 830 nm probe has been developed for imaging hemoglobin. Methylene blue, a biological dye with well-know photophysics, was used to characterize the system before investigating the origin of the hemoglobin PPOCT signal. The first in vivo PPOCT images were recorded of the vasculature in Xenopus laevis. The technique was shown to work equally well in flowing and nonflowing vessels. Furthermore, PPOCT was compared with other OCT extensions which require flow, such as Doppler OCT and phase-variance OCT. PPOCT was shown to better delineate tortuous vessels, where nodes often restrict Doppler and phase-variance reconstruction.
Collapse
Affiliation(s)
- Oscar Carrasco-Zevallos
- Department of Biomedical Engineering, 5045 Emerging Technologies Building, 3120 TAMU, Texas A&M University, College Station, TX 77843, USA
| | - Ryan L. Shelton
- Department of Biomedical Engineering, 5045 Emerging Technologies Building, 3120 TAMU, Texas A&M University, College Station, TX 77843, USA
| | - Wihan Kim
- Department of Biomedical Engineering, 5045 Emerging Technologies Building, 3120 TAMU, Texas A&M University, College Station, TX 77843, USA
| | - Jeremy Pearson
- Department of Biomedical Engineering, 5045 Emerging Technologies Building, 3120 TAMU, Texas A&M University, College Station, TX 77843, USA
| | - Brian E. Applegate
- Department of Biomedical Engineering, 5045 Emerging Technologies Building, 3120 TAMU, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
19
|
Yi J, Chen S, Backman V, Zhang HF. In vivo functional microangiography by visible-light optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2014; 5:3603-12. [PMID: 25360376 PMCID: PMC4206328 DOI: 10.1364/boe.5.003603] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/04/2014] [Accepted: 09/06/2014] [Indexed: 05/03/2023]
Abstract
Although hemoglobin oxygen saturation (sO2) in the microvasculature is an essential physiological parameter of local tissue functions, non-invasive measurement of microvascular sO2 is still challenging. Here, we demonstrated that visible-light optical coherence tomography (vis-OCT) can simultaneously provide three-dimensional anatomical tissue morphology, visualize microvasculature at the capillary level, and measure sO2 from the microvasculature in vivo. We utilized speckle contrast caused by the moving blood cells to enhance microvascular imaging. We applied a series of short-time inverse Fourier transforms to obtain the spectroscopic profile of blood optical attenuation, from which we quantified sO2. We validated the sO2 measurement in mouse ears in vivo through hypoxia and hyperoxia challenges. We further demonstrated that vis-OCT can continuously monitor dynamic changes of microvascular sO2.
Collapse
Affiliation(s)
- Ji Yi
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston 60208, USA
| | - Siyu Chen
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston 60208, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston 60208, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston 60208, USA
- Department of Ophthalmology, Northwestern University, 2145 Sheridan Rd., Evanston 60208, USA
| |
Collapse
|
20
|
Xiao P, Li Q, Joo Y, Nam J, Hwang S, Song J, Kim S, Joo C, Kim KH. Detection of pH-induced aggregation of "smart" gold nanoparticles with photothermal optical coherence tomography. OPTICS LETTERS 2013; 38:4429-32. [PMID: 24177111 DOI: 10.1364/ol.38.004429] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We report the feasibility of a novel contrast agent, namely "smart" gold nanoparticles (AuNPs), in the detection of cancer cells with photothermal optical coherence tomography (PT-OCT). "Smart" AuNPs form aggregation in low pH condition, which is typical for cancer cells, and this aggregation results in a shift of their absorption spectrum. A PT-OCT system was developed to detect this pH-induced aggregation by combining an OCT light source and a laser with 660 nm in wavelength for photothermal excitation. Optical detection of pH-induced aggregation was tested with solution samples at two different pH conditions. An increase in optical path length (OPL) variation was measured at mild acidic condition, while there was not much change at neutral condition. Detection of cancer cells was tested with cultured cell samples. HeLa and fibroblast cells, as cancer and normal cells respectively, were incubated with "smart" gold nanoparticles and measured with PT-OCT. An elevated OPL variation signal was detected with the HeLa cells while not much of a signal was detected with the fibroblast cells. With the novel optical property of "smart" AuNPs and high sensitivity of PT-OCT, this technique is promising for cancer cell detection.
Collapse
|
21
|
Xu X, Geng J, Liu G, Chen Z. Evaluation of optical coherence tomography for the measurement of the effects of activators and anticoagulants on the blood coagulation in vitro. IEEE Trans Biomed Eng 2013; 60:2100-6. [PMID: 23392340 PMCID: PMC3888882 DOI: 10.1109/tbme.2013.2245329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Optical properties of human blood during coagulation were studied using optical coherence tomography (OCT) and the parameter of clotting time derived from the 1/e light penetration depth (d(1/e)) versus time was developed in our previous work. In this study, in order to know if a new OCT test can characterize the blood-coagulation process under different treatments in vitro, the effects of two different activators (calcium ions and thrombin) and anticoagulants, i.e., acetylsalicylic acid (ASA, a well-known drug aspirin) and melagatran (a direct thrombin inhibitor), at various concentrations are evaluated. A swept-source OCT system with a 1300 nm center wavelength is used for detecting the blood-coagulation process in vitro under a static condition. A dynamic study of d1/e reveals a typical behavior due to coagulation induced by both calcium ions and thrombin, and the clotting time is concentration-dependent. Dose-dependent ASA and melagatran prolong the clotting times. ASA and melagatran have different effects on blood coagulation. As expected, melagatran is much more effective than ASA in anticoagulation by the OCT measurements. The OCT assay appears to be a simple method for the measurement of blood coagulation to assess the effects of activators and anticoagulants, which can be used for activator and anticoagulant screening.
Collapse
Affiliation(s)
- Xiangqun Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China ()
| | - Jinhai Geng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China ()
| | - Gangjun Liu
- Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, CA 92617 USA ()
| | - Zhongping Chen
- Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, CA 92617 USA ()
| |
Collapse
|
22
|
Liu W, Jiao S, Zhang HF. Accuracy of retinal oximetry: a Monte Carlo investigation. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:066003. [PMID: 23733019 PMCID: PMC3669519 DOI: 10.1117/1.jbo.18.6.066003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Retinal hemoglobin oxygen saturation (sO2) level is believed to be associated with the pathophysiology of several leading blinding diseases. Methods to properly measure retinal sO2 have been investigated for decades; however, the accuracy of retinal oximetry is still considered to be limited. The Monte Carlo simulation of photon transport in retina to examine how the accuracy of retinal oximetry is affected by local parameters is discussed. Fundus photography was simulated in a multilayer retinal model, in which a single vessel segment with 0.7 sO2 was embedded, at six optical wavelengths. Then, 200 million photons were traced in each simulation to ensure statistically stable results. The optical reflectance and energy deposit were recorded to measure sO2 using both the reflection method (existing retinal oximetry) and a new absorption method, photoacoustic ophthalmoscopy (PAOM). By varying the vessel diameter and melanin concentration in the retinal pigment epithelium, the relative error of sO2 measurement in the reflection method increased with increasing vessel diameter and melanin concentration; in comparison, the sO2 measurement was insensitive to these two parameters in PAOM. The results suggest that PAOM potentially can be a more accurate tool in quantifying retinal sO2.
Collapse
Affiliation(s)
- Wenzhong Liu
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois 60208
| | - Shuliang Jiao
- Florida International University, Department of Biomedical Engineering, Miami, Florida 33174
| | - Hao F. Zhang
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois 60208
- Northwestern University, Department of Ophthalmology, Chicago, Illinois 60611
- Address all correspondence to: Hao F. Zhang, Northwestern University, Department of Biomedical Engineering, Evanston, Illinois 60208. Tel: 847-491-2946; Fax: 847-491-4928; E-mail:
| |
Collapse
|
23
|
Yin B, Kuranov RV, McElroy AB, Kazmi S, Dunn AK, Duong TQ, Milner TE. Dual-wavelength photothermal optical coherence tomography for imaging microvasculature blood oxygen saturation. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:56005. [PMID: 23640076 PMCID: PMC3642243 DOI: 10.1117/1.jbo.18.5.056005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A swept-source dual-wavelength photothermal (DWP) optical coherence tomography (OCT) system is demonstrated for quantitative imaging of microvasculature oxygen saturation. DWP-OCT is capable of recording three-dimensional images of tissue and depth-resolved phase variation in response to photothermal excitation. A 1,064-nm OCT probe and 770-nm and 800-nm photothermal excitation beams are combined in a single-mode optical fiber to measure microvasculature hemoglobin oxygen saturation (SO(2)) levels in phantom blood vessels with a range of blood flow speeds (0 to 17 mm/s). A 50-μm-diameter blood vessel phantom is imaged, and SO(2) levels are measured using DWP-OCT and compared with values provided by a commercial oximeter at various blood oxygen concentrations. The influences of blood flow speed and mechanisms of SNR phase degradation on the accuracy of SO(2) measurement are identified and investigated.
Collapse
Affiliation(s)
- Biwei Yin
- University of Texas at Austin, Departments of Electrical and Computer Engineering, 1 University Station C0803, Austin, Texas 78712
| | - Roman V. Kuranov
- University of Texas Health Science Center at San Antonio, Department of Ophthalmology, 7703 Floyd Curl Drive, San Antonio, Texas 78229
- Address all correspondence to: Roman V. Kuranov, University of Texas Health Science Center at San Antonio, Department of Ophthalmology, 7703 Floyd Curl Drive, San Antonio, Texas 78229. Tel: 210-567-8402; Fax: 210-567-8413; E-mail:
| | - Austin B. McElroy
- University of Texas at Austin, Department of Biomedical Engineering, 1 University Station C0800, Austin, Texas 78712
| | - Shams Kazmi
- University of Texas at Austin, Department of Biomedical Engineering, 1 University Station C0800, Austin, Texas 78712
| | - Andrew K. Dunn
- University of Texas at Austin, Department of Biomedical Engineering, 1 University Station C0800, Austin, Texas 78712
| | - Timothy Q. Duong
- University of Texas Health Science Center at San Antonio, Department of Ophthalmology, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Thomas E. Milner
- University of Texas at Austin, Department of Biomedical Engineering, 1 University Station C0800, Austin, Texas 78712
| |
Collapse
|
24
|
Tucker-Schwartz JM, Meyer TA, Patil CA, Duvall CL, Skala MC. In vivo photothermal optical coherence tomography of gold nanorod contrast agents. BIOMEDICAL OPTICS EXPRESS 2012; 3:2881-95. [PMID: 23162726 PMCID: PMC3493242 DOI: 10.1364/boe.3.002881] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 05/18/2023]
Abstract
Photothermal optical coherence tomography (PT-OCT) is a potentially powerful tool for molecular imaging. Here, we characterize PT-OCT imaging of gold nanorod (GNR) contrast agents in phantoms, and we apply these techniques for in vivo GNR imaging. The PT-OCT signal was compared to the bio-heat equation in phantoms, and in vivo PT-OCT images were acquired from subcutaneous 400 pM GNR Matrigel injections into mice. Experiments revealed that PT-OCT signals varied as predicted by the bio-heat equation, with significant PT-OCT signal increases at 7.5 pM GNR compared to a scattering control (p < 0.01) while imaging in common path configuration. In vivo PT-OCT images demonstrated an appreciable increase in signal in the presence of GNRs compared to controls. Additionally, in vivo PT-OCT GNR signals were spatially distinct from blood vessels imaged with Doppler OCT. We anticipate that the demonstrated in vivo PT-OCT sensitivity to GNR contrast agents is sufficient to image molecular expression in vivo. Therefore, this work demonstrates the translation of PT-OCT to in vivo imaging and represents the next step towards its use as an in vivo molecular imaging tool.
Collapse
|
25
|
Kim S, Rinehart MT, Park H, Zhu Y, Wax A. Phase-sensitive OCT imaging of multiple nanoparticle species using spectrally multiplexed single pulse photothermal excitation. BIOMEDICAL OPTICS EXPRESS 2012; 3:2579-86. [PMID: 23082297 PMCID: PMC3470000 DOI: 10.1364/boe.3.002579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/02/2012] [Accepted: 09/13/2012] [Indexed: 05/24/2023]
Abstract
We apply phase-sensitive optical coherence tomography to image multiple nanoparticle species with two excitation wavelengths matched to their distinct absorption peaks. Using different modulation frequencies, multiple species collocated within the sample can be distinguished. In addition, we characterize single-pulse excitation schemes as a method to minimize bulk heating of the sample. We demonstrate this new scheme with B-mode photothermal measurements of tissue phantoms.
Collapse
|
26
|
Kanawade R, Stelzle F, Schmidt M. In Vivo Monitoring of Hemodynamic Changes during Clogging and Unclogging of Blood Supply for the Application of Clinical Shock Detection. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.phpro.2012.10.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Guan G, Reif R, Huang Z, Wang RK. Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:126003. [PMID: 22191920 PMCID: PMC3247934 DOI: 10.1117/1.3659211] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/11/2011] [Accepted: 10/19/2011] [Indexed: 05/19/2023]
Abstract
A model that describes the concentration of photothermal (light-to-heat converters) compounds as a function of depth in a turbid medium is developed. The system consists of a pump laser (808 nm modulated at 400 Hz), which heats a photothermal compound, and a phase sensitive spectral domain optical coherence tomography system, which detects the changes in the optical path length of the sample induced by the temperature increase. The model is theoretically derived and the coefficients are empirically determined using solid homogeneous gel phantoms. The model is validated by reconstructing the concentration of a photothermal compound in thick single and double layer solid phantoms.
Collapse
Affiliation(s)
- Guangying Guan
- University of Washington, Department of Bioengineering, 3720 15th Avenue N. E., Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
28
|
Kuranov RV, Kazmi S, McElroy AB, Kiel JW, Dunn AK, Milner TE, Duong TQ. In vivo depth-resolved oxygen saturation by Dual-Wavelength Photothermal (DWP) OCT. OPTICS EXPRESS 2011; 19:23831-44. [PMID: 22109408 PMCID: PMC3482904 DOI: 10.1364/oe.19.023831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microvasculature hemoglobin oxygen saturation (SaO2) is important in the progression of various pathologies. Non-invasive depth-resolved measurement of SaO2 levels in tissue microvasculature has the potential to provide early biomarkers and a better understanding of the pathophysiological processes allowing improved diagnostics and prediction of disease progression. We report proof-of-concept in vivo depth-resolved measurement of SaO(2) levels in selected 30 µm diameter arterioles in the murine brain using Dual-Wavelength Photothermal (DWP) Optical Coherence Tomography (OCT) with 800 nm and 770 nm photothermal excitation wavelengths. Depth location of back-reflected light from a target arteriole was confirmed using Doppler and speckle contrast OCT images. SaO(2) measured in a murine arteriole with DWP-OCT is linearly correlated (R(2)=0.98) with systemic SaO(2) values recorded by a pulse-oximeter. DWP-OCT are steadily lower (10.1%) than systemic SaO(2) values except during pure oxygen breathing. DWP-OCT is insensitive to OCT intensity variations and is a candidate approach for in vivo depth-resolved quantitative imaging of microvascular SaO(2) levels.
Collapse
Affiliation(s)
- Roman V Kuranov
- Department of Ophthalmology, The University of Texas Health Science Center, San Antonio, Texas 78229, USA.
| | | | | | | | | | | | | |
Collapse
|