1
|
D'Acunto M, Cioni P, Gabellieri E, Presciuttini G. Exploiting gold nanoparticles for diagnosis and cancer treatments. NANOTECHNOLOGY 2021; 32:192001. [PMID: 33524960 DOI: 10.1088/1361-6528/abe1ed] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gold nanoparticles (AuNPs) represent a relatively simple nanosystem to be synthesised and functionalized. AuNPs offer numerous advantages over different nanomaterials, primarily due to highly optimized protocols for their production with sizes in the range 1-150 nm and shapes, spherical, nanorods (AuNRs), nanocages, nanostars or nanoshells (AuNSs), just to name a few. AuNPs possess unique properties both from the optical and chemical point of view. AuNPs can absorb and scatter light with remarkable efficiency. Their outstanding interaction with light is due to the conduction electrons on the metal surface undergoing a collective oscillation when they are excited by light at specific wavelengths. This oscillation, known as a localized surface plasmon resonance, causes the absorption and scattering intensities of AuNPs to be significantly higher than identically sized non-plasmonic nanoparticles. In addition, AuNP absorption and scattering properties can be tuned by controlling the particle size, shape, and the local refractive index near the particle surface. By the chemical side, AuNPs offer the advantage of functionalization with therapeutic agents through covalent and ionic binding, which can be useful for biomedical applications, with particular emphasis on cancer treatments. Functionalized AuNPs exhibit good biocompatibility and controllable distribution patterns when delivered in cells and tissues, which make them particularly fine candidates for the basis of innovative therapies. Currently, major available AuNP-based cancer therapeutic approaches are the photothermal therapy (PTT) or photodynamic therapy (PDT). PTT and PDT rely upon irradiation of surface plasmon resonant AuNPs (previously delivered in cancer cells) by light, in particular, in the near-infrared range. Under irradiation, AuNPs surface electrons are excited and resonate intensely, and fast conversion of light into heat takes place in about 1 ps. The cancer cells are destroyed by the induced hyperthermia, i.e. the condition under which cells are subject to temperature in the range of 41 °C-47 °C for tens of minutes. The review is focused on the description of the optical and thermal properties of AuNPs that underlie their continuous and progressive exploitation for diagnosis and cancer therapy.
Collapse
Affiliation(s)
- Mario D'Acunto
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| | - Patrizia Cioni
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| | - Edi Gabellieri
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| | - Gianluca Presciuttini
- Institute of Biophysics, Italian National Research Council, CNR-IBF, via Moruzzi 1,I- 56124, Pisa, Italy
| |
Collapse
|
2
|
Optimization of Nonspherical Gold Nanoparticles for Photothermal Therapy. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous investigations devoted to the optimization of nonspherical gold nanoparticles for photothermal therapy (PTT) encountered two issues, namely, the appropriate selection of objective functions and the processing of particle random orientations. In this study, these issues were resolved, and accurate optimization results were obtained for the three typical nonspherical gold nanoparticles (nanospheroid, nanocylinder, and nanorod) by using the T-matrix method. The dependence of the optimization results on the excitation wavelength and the refractive index of tissue was investigated. Regardless of the excitation wavelength and tissue type, gold nanospheroids were found to be the most effective therapeutic agents for PTT. The light absorption ability of optimized nanoparticles could be enhanced by using a laser with a longer wavelength. Finally, the design tolerance for the different sizes of nanoparticles was provided.
Collapse
|
3
|
Grosges T, Barchiesi D. Gold Nanoparticles as a Photothermal Agent in Cancer Therapy: The Thermal Ablation Characteristic Length. Molecules 2018; 23:E1316. [PMID: 29857469 PMCID: PMC6100518 DOI: 10.3390/molecules23061316] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 11/19/2022] Open
Abstract
In cancer therapy, the thermal ablation of diseased cells by embedded nanoparticles is one of the known therapies. It is based on the absorption of the energy of the illuminating laser by nanoparticles. The resulting heating of nanoparticles kills the cell where these photothermal agents are embedded. One of the main constraints of this therapy is preserving the surrounding healthy cells. Therefore, two parameters are of interest. The first one is the thermal ablation characteristic length, which corresponds to an action distance around the nanoparticles for which the temperature exceeds the ablation threshold. This critical geometric parameter is related to the expected conservation of the body temperature in the surroundings of the diseased cell. The second parameter is the temperature that should be reached to achieve active thermal agents. The temperature depends on the power of the illuminating laser, on the size of nanoparticles and on their physical properties. The purpose of this paper is to propose behavior laws under the constraints of both the body temperature at the boundary of the cell to preserve surrounding cells and an acceptable range of temperature in the target cell. The behavior laws are deduced from the finite element method, which is able to model aggregates of nanoparticles. We deduce sensitivities to the laser power and to the particle size. We show that the tuning of the temperature elevation and of the distance of action of a single nanoparticle is not significantly affected by variations of the particle size and of the laser power. Aggregates of nanoparticles are much more efficient, but represent a potential risk to the surrounding cells. Fortunately, by tuning the laser power, the thermal ablation characteristic length can be controlled.
Collapse
Affiliation(s)
- Thomas Grosges
- Group for Automatic Mesh Generation and Advanced Methods (Gamma3 UTT-INRIA), University of Technology of Troyes, 12 rue Marie Curie, CS 42060, F-10004 Troyes CEDEX, France.
| | - Dominique Barchiesi
- Group for Automatic Mesh Generation and Advanced Methods (Gamma3 UTT-INRIA), University of Technology of Troyes, 12 rue Marie Curie, CS 42060, F-10004 Troyes CEDEX, France.
| |
Collapse
|
4
|
Hochuli R, Powell S, Arridge S, Cox B. Quantitative photoacoustic tomography using forward and adjoint Monte Carlo models of radiance. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:126004. [PMID: 27918801 DOI: 10.1117/1.jbo.21.12.126004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/07/2016] [Indexed: 05/06/2023]
Abstract
Forward and adjoint Monte Carlo (MC) models of radiance are proposed for use in model-based quantitative photoacoustic tomography. A two-dimensional (2-D) radiance MC model using a harmonic angular basis is introduced and validated against analytic solutions for the radiance in heterogeneous media. A gradient-based optimization scheme is then used to recover 2-D absorption and scattering coefficients distributions from simulated photoacoustic measurements. It is shown that the functional gradients, which are a challenge to compute efficiently using MC models, can be calculated directly from the coefficients of the harmonic angular basis used in the forward and adjoint models. This work establishes a framework for transport-based quantitative photoacoustic tomography that can fully exploit emerging highly parallel computing architectures.
Collapse
Affiliation(s)
- Roman Hochuli
- University College London, Department of Medical Physics and Biomedical Engineering, Malet Place, WC1E 6BT London, United Kingdom
| | - Samuel Powell
- University College London, Department of Medical Physics and Biomedical Engineering, Malet Place, WC1E 6BT London, United Kingdom
| | - Simon Arridge
- University College London, Department of Computer Science, Malet Place, WC1E 6BT London, United Kingdom
| | - Ben Cox
- University College London, Department of Medical Physics and Biomedical Engineering, Malet Place, WC1E 6BT London, United Kingdom
| |
Collapse
|
5
|
Numerical Study of Photoacoustic Pressure for Cancer Therapy. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6110357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
England CG, Gobin AM, Frieboes HB. Evaluation of uptake and distribution of gold nanoparticles in solid tumors. EUROPEAN PHYSICAL JOURNAL PLUS 2015; 130:231. [PMID: 27014559 PMCID: PMC4800753 DOI: 10.1140/epjp/i2015-15231-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although nanotherapeutics offer a targeted and potentially less toxic alternative to systemic chemotherapy in cancer treatment, nanotherapeutic transport is typically hindered by abnormal characteristics of tumor tissue. Once nanoparticles targeted to tumor cells arrive in the circulation of tumor vasculature, they must extravasate from irregular vessels and diffuse through the tissue to ideally reach all malignant cells in cytotoxic concentrations. The enhanced permeability and retention effect can be leveraged to promote extravasation of appropriately sized particles from tumor vasculature; however, therapeutic success remains elusive partly due to inadequate intra-tumoral transport promoting heterogeneous nanoparticle uptake and distribution. Irregular tumor vasculature not only hinders particle transport but also sustains hypoxic tissue kregions with quiescent cells, which may be unaffected by cycle-dependent chemotherapeutics released from nanoparticles and thus regrow tumor tissue following nanotherapy. Furthermore, a large proportion of systemically injected nanoparticles may become sequestered by the reticuloendothelial system, resulting in overall diminished efficacy. We review recent work evaluating the uptake and distribution of gold nanoparticles in pre-clinical tumor models, with the goal to help improve nanotherapy outcomes. We also examine the potential role of novel layered gold nanoparticles designed to address some of these critical issues, assessing their uptake and transport in cancerous tissue.
Collapse
Affiliation(s)
- Christopher G England
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40292, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA
| | - André M Gobin
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| | - Hermann B Frieboes
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40292, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA; Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
7
|
Barchiesi D. Lycurgus Cup: inverse problem using photographs for characterization of matter. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2015; 32:1544-1555. [PMID: 26367298 DOI: 10.1364/josaa.32.001544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photographs of the Lycurgus Cup with a source light inside and outside exhibit purple and green colors, respectively (dichroism). A model relying on the scattering of light to colors in the photographs is proposed and used within an inverse problem algorithm, to deduce radius and composition of metallic particles, and the refractive index of the surrounding glass medium. The inverse problem algorithm is based on a hybridization of particle swarm optimization and of the simulated annealing methods. The results are compared to experimental measurements on a small sample of glass. The linear laws that are deduced from sets of possible parameters producing the same color in the photographs help simplify the understanding of phenomena. The proportion of silver to gold in nanoparticles is found to be in agreement, but a large proportion of copper is also found. The retrieved refractive index of the surrounding glass is close to 2.
Collapse
|
8
|
Detection of Phosphatidylcholine-Coated Gold Nanoparticles in Orthotopic Pancreatic Adenocarcinoma using Hyperspectral Imaging. PLoS One 2015; 10:e0129172. [PMID: 26046360 PMCID: PMC4457854 DOI: 10.1371/journal.pone.0129172] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/05/2015] [Indexed: 02/08/2023] Open
Abstract
Nanoparticle uptake and distribution to solid tumors are limited by reticuloendothelial system systemic filtering and transport limitations induced by irregular intra-tumoral vascularization. Although vascular enhanced permeability and retention can aid targeting, high interstitial fluid pressure and dense extracellular matrix may hinder local penetration. Extravascular diffusivity depends upon nanoparticle size, surface modifications, and tissue vascularization. Gold nanoparticles functionalized with biologically-compatible layers may achieve improved uptake and distribution while enabling cytotoxicity through synergistic combination of chemotherapy and thermal ablation. Evaluation of nanoparticle uptake in vivo remains difficult, as detection methods are limited. We employ hyperspectral imaging of histology sections to analyze uptake and distribution of phosphatidylcholine-coated citrate gold nanoparticles (CGN) and silica-gold nanoshells (SGN) after tail-vein injection in mice bearing orthotopic pancreatic adenocarcinoma. For CGN, the liver and tumor showed 26.5±8.2 and 23.3±4.1 particles/100μm2 within 10μm from the nearest source and few nanoparticles beyond 50μm, respectively. The spleen had 35.5±9.3 particles/100μm2 within 10μm with penetration also limited to 50μm. For SGN, the liver showed 31.1±4.1 particles/100μm2 within 10μm of the nearest source with penetration hindered beyond 30μm. The spleen and tumor showed uptake of 22.1±6.2 and 15.8±6.1 particles/100μm2 within 10μm, respectively, with penetration similarly hindered. CGH average concentration (nanoparticles/μm2) was 1.09±0.14 in the liver, 0.74±0.12 in the spleen, and 0.43±0.07 in the tumor. SGN average concentration (nanoparticles/μm2) was 0.43±0.07 in the liver, 0.30±0.06 in the spleen, and 0.20±0.04 in the tumor. Hyperspectral imaging of histology sections enables analysis of phosphatidylcholine-coated gold-based nanoparticles in pancreatic tumors with the goal to improve nanotherapeutic efficacy.
Collapse
|
9
|
Numerical study of plasmonic efficiency of gold nanostripes for molecule detection. ScientificWorldJournal 2015; 2015:724123. [PMID: 25734184 PMCID: PMC4334927 DOI: 10.1155/2015/724123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/21/2015] [Indexed: 11/18/2022] Open
Abstract
In plasmonics, the accurate computation of the electromagnetic field enhancement is necessary in determining the amplitude and the spatial extension of the field around nanostructures. Here, the problem of the interaction between an electromagnetic excitation and gold nanostripes is solved. An optimization scheme, including an adaptive remeshing process with error estimator, is used to solve the problem through a finite element method. The variations of the electromagnetic field amplitude and the plasmonic active zones around nanostructures for molecule detection are studied in this paper taking into account the physical and geometrical parameters of the nanostripes. The evolution between the sizes and number of nanostripes is shown.
Collapse
|
10
|
Sikdar D, Rukhlenko ID, Cheng W, Premaratne M. Optimized gold nanoshell ensembles for biomedical applications. NANOSCALE RESEARCH LETTERS 2013; 8:142. [PMID: 23537206 PMCID: PMC3680205 DOI: 10.1186/1556-276x-8-142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/16/2013] [Indexed: 05/27/2023]
Abstract
: We theoretically study the properties of the optimal size distribution in the ensemble of hollow gold nanoshells (HGNs) that exhibits the best performance at in vivo biomedical applications. For the first time, to the best of our knowledge, we analyze the dependence of the optimal geometric means of the nanoshells' thicknesses and core radii on the excitation wavelength and the type of human tissue, while assuming lognormal fit to the size distribution in a real HGN ensemble. Regardless of the tissue type, short-wavelength, near-infrared lasers are found to be the most effective in both absorption- and scattering-based applications. We derive approximate analytical expressions enabling one to readily estimate the parameters of optimal distribution for which an HGN ensemble exhibits the maximum efficiency of absorption or scattering inside a human tissue irradiated by a near-infrared laser.
Collapse
Affiliation(s)
- Debabrata Sikdar
- Advanced Computing and Simulation Laboratory (A χL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria, Australia
| | - Ivan D Rukhlenko
- Advanced Computing and Simulation Laboratory (A χL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria, Australia
| | - Wenlong Cheng
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria, Australia
- , The Melbourne Centre for Nanofabrication, 151 Wellington RoadClayton 3168, Victoria, Australia
| | - Malin Premaratne
- Advanced Computing and Simulation Laboratory (A χL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
11
|
Barchiesi D, Kessentini S, Guillot N, de la Chapelle ML, Grosges T. Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties. OPTICS EXPRESS 2013; 21:2245-2262. [PMID: 23389205 DOI: 10.1364/oe.21.002245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The plasmonic nanostructures are widely used to design sensors with improved capabilities. The position of the localized surface plasmon resonance (LSPR) is part of their characteristics and deserves to be specifically studied, according to its importance in sensor tuning, especially for spectroscopic applications. In the visible and near infra-red domain, the LSPR of an array of nano-gold-cylinders is considered as a function of the diameter, height of cylinders and the thickness of chromium adhesion layer and roughness. A numerical experience plan is used to calculate heuristic laws governing the inverse problem and the propagation of uncertainties. Simple linear formulae are deduced from fitting of discrete dipole approximation (DDA) calculations of spectra and a good agreement with various experimental results is found. The size of cylinders can be deduced from a target position of the LSPR and conversely, the approximate position of the LSPR can be simply deduced from the height and diameter of cylinders. The sensitivity coefficients and the propagation of uncertainties on these parameters are evaluated from the fitting of 15500 computations of the DDA model. The case of a grating of nanodisks and of homothetic cylinders is presented and expected trends in the improvement of the fabrication process are proposed.
Collapse
Affiliation(s)
- Dominique Barchiesi
- Project Group for Automatic Mesh Generation and Advanced Methods, Gamma3 project (UTT-INRIA), University of Technology of Troyes – 12 Rue Marie Curie – CS 42060, 10004 Troyes Cedex, France.
| | | | | | | | | |
Collapse
|
12
|
Sikdar D, Rukhlenko ID, Cheng W, Premaratne M. Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy. BIOMEDICAL OPTICS EXPRESS 2013; 4:15-31. [PMID: 23304644 PMCID: PMC3539187 DOI: 10.1364/boe.4.000015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 05/29/2023]
Abstract
Despite much research efforts being devoted to the design optimization of metallic nanoshells, no account is taken of the fact that the number of the nanoshells that can be delivered to a given cancerous site vary with their size. In this paper, we study the effect of the nanoshell number density on the absorption and scattering properties of a gold-nanoshell ensemble exposed to a broadband near-infrared radiation, and optimize the nanoshells' dimensions for efficient cancer treatment by analyzing a wide range of human tissues. We first consider the general situation in which the number of the delivered nanoshells decreases with their mean radius R as ∝ R(-β), and demonstrate that the optimal design of nanoshells required to treat cancer most efficiently depends critically on β. In the case of β = 2, the maximal energy absorbed (scattered) by the ensemble is achieved for the same dimensions that maximize the absorption (scattering) efficiency of a single nanoshell. We thoroughly study this special case by the example of gold nanoshells with silica core. To ensure that minimal thermal injury is caused to the healthy tissue surrounding a cancerous site, we estimate the optimal dimensions that minimize scattering by the nanoshells for a desired value of the absorption efficiency. The comparison of gold nanoshells with different cores shows that hollow nanoshells exhibiting relatively low absorption efficiency are less harmful to the healthy tissue and, hence, are preferred over the strongly absorbing nanoshells. For each of the cases analyzed, we provide approximate analytical expressions for the optimal nanoshell dimensions, which may be used as design guidelines by experimentalists, in order to optimize the synthesis of gold nanoshells for treating different types of human cancer at their various growth stages.
Collapse
Affiliation(s)
- Debabrata Sikdar
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria,
Australia
| | - Ivan D. Rukhlenko
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria,
Australia
| | - Wenlong Cheng
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton 3800, Victoria,
Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton 3168, Victoria,
Australia
| | - Malin Premaratne
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton 3800, Victoria,
Australia
| |
Collapse
|
13
|
Kessentini S, Barchiesi D. Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy. BIOMEDICAL OPTICS EXPRESS 2012; 3:590-604. [PMID: 22435104 PMCID: PMC3296544 DOI: 10.1364/boe.3.000590] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 05/03/2023]
Abstract
The purpose of this study is to get more efficient gold nanoparticles, for necrosis of cancer cells, in photothermal therapy. Therefore a numerical maximization of the absorption efficiency of a set of nanoparticles (nanorod, nanoshell and hollow nanosphere) is proposed, assuming that all the absorbed light is converted to heat. Two therapeutic cases (shallow and deep cancer) are considered. The numerical tools used in this study are the full Mie theory, the discrete dipole approximation and the particle swarm optimization. The optimization leads to an improved efficiency of the nanoparticles compared with previous studies. For the shallow cancer therapy, the hollow nanosphere seems to be more efficient than the other nanoparticles, whereas the hollow nanosphere and nanorod, offer comparable absorption efficiencies, for deep cancer therapy. Finally, a study of tolerance for the size parameters to guarantee an absorption efficiency threshold is included.
Collapse
Affiliation(s)
- Sameh Kessentini
- Project Group for Automatic Mesh Generation and Advanced Methods - Gamma3 Project (UTT-INRIA), University of Technology of Troyes, 12 rue Marie Curie - BP 2060, 10010 Troyes Cedex,
France
| | - Dominique Barchiesi
- Project Group for Automatic Mesh Generation and Advanced Methods - Gamma3 Project (UTT-INRIA), University of Technology of Troyes, 12 rue Marie Curie - BP 2060, 10010 Troyes Cedex,
France
| |
Collapse
|