1
|
Gao M, Li Y, Song D, Li D, Liu Q. All-fiber chirp tuning of ultrashort pulses via long chirped fiber Bragg grating pair. OPTICS LETTERS 2025; 50:1105-1108. [PMID: 39951737 DOI: 10.1364/ol.546499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025]
Abstract
Chirp tuning of ultrashort pulses is crucial for nonlinear fiber amplification and nonlinear dynamics investigations. Here we demonstrate all-fiber chirp tuning via a chirped fiber Bragg grating (CFBG) pair. Two identically long CFBGs were placed reversely to cancel out most of their huge dispersion (∼40 ps/nm or ∼22.4 ps2 @1030 nm), while the controllable temperature gradient along them could be used for precise chirp tuning with a tuning range of ∼ps2, verified by dispersion measurement and ultrashort pulse broadening. This relatively large chirp tuning could be used in prechirp management in nonlinear fiber amplifiers, exemplified by the optical spectrum tailoring therein. In addition, we also show this precise chirp tuning capability could be very helpful for pulse temporal quality diagnosis, which is indispensable for seed pulse optimization. We believe this all-fiber chirp tuning technique would find wide applications in nonlinear amplification and ultrafast nonlinear dynamics investigations.
Collapse
|
2
|
Kang D, Wang C, Han Z, Zheng L, Guo W, Fu F, Qiu L, Han X, He J, Li L, Chen J. Exploration of the relationship between tumor-infiltrating lymphocyte score and histological grade in breast cancer. BMC Cancer 2024; 24:318. [PMID: 38454386 PMCID: PMC10921807 DOI: 10.1186/s12885-024-12069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The histological grade is an important factor in the prognosis of invasive breast cancer and is vital to accurately identify the histological grade and reclassify of Grade2 status in breast cancer patients. METHODS In this study, data were collected from 556 invasive breast cancer patients, and then randomly divided into training cohort (n = 335) and validation cohort (n = 221). All patients were divided into actual low risk group (Grade1) and high risk group (Grade2/3) based on traditional histological grade, and tumor-infiltrating lymphocyte score (TILs-score) obtained from multiphoton images, and the TILs assessment method proposed by International Immuno-Oncology Biomarker Working Group (TILs-WG) were also used to differentiate between high risk group and low risk group of histological grade in patients with invasive breast cancer. Furthermore, TILs-score was used to reclassify Grade2 (G2) into G2 /Low risk and G2/High risk. The coefficients for each TILs in the training cohort were retrieved using ridge regression and TILs-score was created based on the coefficients of the three kinds of TILs. RESULTS Statistical analysis shows that TILs-score is significantly correlated with histological grade, and is an independent predictor of histological grade (odds ratio [OR], 2.548; 95%CI, 1.648-3.941; P < 0.0001), but TILs-WG is not an independent predictive factor for grade (P > 0.05 in the univariate analysis). Moreover, the risk of G2/High risk group is higher than that of G2/Low risk group, and the survival rate of patients with G2/Low risk is similar to that of Grade1, while the survival rate of patients with G2/High risk is even worse than that of patients with G3. CONCLUSION Our results suggest that TILs-score can be used to predict the histological grade of breast cancer and potentially to guide the therapeutic management of breast cancer patients.
Collapse
Affiliation(s)
- Deyong Kang
- Department of Pathology, Fujian Medical University Union Hospital, 350001, Fuzhou, P. R. China
| | - Chuan Wang
- Breast Surgery Ward, Department of General Surgery, Fujian Medical University Union Hospital, 350001, Fuzhou, P. R. China
| | - Zhonghua Han
- Breast Surgery Ward, Department of General Surgery, Fujian Medical University Union Hospital, 350001, Fuzhou, P. R. China
| | - Liqin Zheng
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, 350007, Fuzhou, P. R. China
| | - Wenhui Guo
- Breast Surgery Ward, Department of General Surgery, Fujian Medical University Union Hospital, 350001, Fuzhou, P. R. China
| | - Fangmeng Fu
- Breast Surgery Ward, Department of General Surgery, Fujian Medical University Union Hospital, 350001, Fuzhou, P. R. China
| | - Lida Qiu
- College of Physics and Electronic Information Engineering, Minjiang University, 350108, Fuzhou, P. R. China
| | - Xiahui Han
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, 350007, Fuzhou, P. R. China
| | - Jiajia He
- School of Science, Jimei University, 361021, Xiamen, P. R. China.
| | - Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, 350007, Fuzhou, P. R. China.
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, 350007, Fuzhou, P. R. China.
| |
Collapse
|
3
|
Blanc H, Kaddour G, David NB, Supatto W, Livet J, Beaurepaire E, Mahou P. Chromatically Corrected Multicolor Multiphoton Microscopy. ACS PHOTONICS 2023; 10:4104-4111. [PMID: 38145164 PMCID: PMC10739991 DOI: 10.1021/acsphotonics.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Indexed: 12/26/2023]
Abstract
Simultaneous imaging of multiple labels in tissues is key to studying complex biological processes. Although strategies for color multiphoton excitation have been established, chromatic aberration remains a major problem when multiple excitation wavelengths are used in a scanning microscope. Chromatic aberration introduces a spatial shift between the foci of beams of different wavelengths that varies across the field of view, severely degrading the performance of color imaging. In this work, we propose an adaptive correction strategy that solves this problem in two-beam microscopy techniques. Axial chromatic aberration is corrected by a refractive phase mask that introduces pure defocus into one beam, while lateral chromatic aberration is corrected by a piezoelectric mirror that dynamically compensates for lateral shifts during scanning. We show that this light-efficient approach allows seamless chromatic correction over the entire field of view of different multiphoton objectives without compromising spatial and temporal resolution and that the effective area for beam-mixing processes can be increased by more than 1 order of magnitude. We illustrate this approach with simultaneous three-color, two-photon imaging of developing zebrafish embryos and fixed Brainbow mouse brain slices over large areas. These results establish a robust and efficient method for chromatically corrected multiphoton imaging.
Collapse
Affiliation(s)
- Hugo Blanc
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Gabriel Kaddour
- Sorbonne
Université, INSERM, CNRS, Institut
de la Vision, 75012 Paris, France
| | - Nicolas B. David
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Willy Supatto
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Jean Livet
- Sorbonne
Université, INSERM, CNRS, Institut
de la Vision, 75012 Paris, France
| | - Emmanuel Beaurepaire
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Pierre Mahou
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS,
INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
4
|
Batista A, Guimarães P, Domingues JP, Quadrado MJ, Morgado AM. Two-Photon Imaging for Non-Invasive Corneal Examination. SENSORS (BASEL, SWITZERLAND) 2022; 22:9699. [PMID: 36560071 PMCID: PMC9783858 DOI: 10.3390/s22249699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Two-photon imaging (TPI) microscopy, namely, two-photon excited fluorescence (TPEF), fluorescence lifetime imaging (FLIM), and second-harmonic generation (SHG) modalities, has emerged in the past years as a powerful tool for the examination of biological tissues. These modalities rely on different contrast mechanisms and are often used simultaneously to provide complementary information on morphology, metabolism, and structural properties of the imaged tissue. The cornea, being a transparent tissue, rich in collagen and with several cellular layers, is well-suited to be imaged by TPI microscopy. In this review, we discuss the physical principles behind TPI as well as its instrumentation. We also provide an overview of the current advances in TPI instrumentation and image analysis. We describe how TPI can be leveraged to retrieve unique information on the cornea and to complement the information provided by current clinical devices. The present state of corneal TPI is outlined. Finally, we discuss the obstacles that must be overcome and offer perspectives and outlooks to make clinical TPI of the human cornea a reality.
Collapse
Affiliation(s)
- Ana Batista
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Physics, Faculty of Science and Technology, University of Coimbra, 3004-516 Coimbra, Portugal
| | - Pedro Guimarães
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - José Paulo Domingues
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Physics, Faculty of Science and Technology, University of Coimbra, 3004-516 Coimbra, Portugal
| | - Maria João Quadrado
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - António Miguel Morgado
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Physics, Faculty of Science and Technology, University of Coimbra, 3004-516 Coimbra, Portugal
| |
Collapse
|
5
|
Jun SW, Jang H, Kim J, Kim CS. Multiphoton excitation imaging via an actively mode-locked tunable fiber-cavity SOA laser around 800 nm. BIOMEDICAL OPTICS EXPRESS 2022; 13:525-538. [PMID: 35284185 PMCID: PMC8884227 DOI: 10.1364/boe.447010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
In this study, an active mode-locked tunable pulsed laser (AML-TPL) is proposed to excite picosecond pulsed light with a rapid wavelength tunability of approximately 800 nm for multiphoton microscopy. The AML-TPL is schematically based on a fiber-cavity semiconductor optical amplifier (SOA) configuration to implement a robust and align-free pulsed light source with a duration of 1.6 ps, a repetition rate of 27.9271 MHz, and average output power of over 600 mW. A custom-built multiphoton imaging system was also built to demonstrate the imaging performance of the proposed AML-TPL by comparing with the commercial Ti:Sapphire femtosecond laser. Two-photon excited fluorescence images were successfully acquired using a human breast cancer cell line (MDA-MB-231) stained with acridine orange.
Collapse
Affiliation(s)
- Seung Won Jun
- Ground Technology Research Institute, Agency for Defense Development, Daejeon 34186, Republic of Korea
- These authors contributed equally to this work
| | - Hansol Jang
- Department of Cogno-Mechatronics Engineering,
Pusan National University, 2 Busandaehak-ro
63 beon-gil, Busan, 46241, Republic of
Korea
- These authors contributed equally to this work
| | - Jaeheung Kim
- Department of Cogno-Mechatronics Engineering,
Pusan National University, 2 Busandaehak-ro
63 beon-gil, Busan, 46241, Republic of
Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering,
Pusan National University, 2 Busandaehak-ro
63 beon-gil, Busan, 46241, Republic of
Korea
| |
Collapse
|