1
|
Roy S, Paul S, Mukherjee S, De P, Mukherjee A. Unraveling Mechanism and Enhancing Selectivity of a Ru II-bis-bipyridyl-morphocumin Complex with RAFT-Generated Glycopolymer Exploiting Warburg Effect in Cancer. Chemistry 2025; 31:e202403695. [PMID: 39614769 DOI: 10.1002/chem.202403695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Indexed: 12/12/2024]
Abstract
The Warburg effect, which generates increased demand of glucose in cancer cells is a relatively underexplored phenomenon in existing commercial drugs to enhance uptake in cancer cells. Here, we present a chemotherapeutic strategy employing a Ru(II)-bis-bipyridyl-morphocumin complex (2) encapsulated in a self-assembling glucose-functionalized copolymer P(G-EMA-co-MMA) (where G=glucose; MMA=methyl methacrylate; EMA=ethyl methacrylate), designed to exploit this effect for enhanced selectivity in cancer treatment. The P(G-EMA-co-MMA) polymer, synthesized via reversible-addition fragmentation chain transfer (RAFT) polymerization, has a number average molecular weight (Mn,NMR) of 8000 g/mol. Complex 2, stable in aqueous media, selectively releases a cytotoxic, lysosome-targeting compound, morphocumin, in the presence of excess hydrogen peroxide (H₂O₂), a reactive oxygen species (ROS) prevalent in tumor microenvironments. Additionally, complex 2 promotes ROS accumulation, which may further enhance morphocumin release through a synergistic domino effect. Comparative studies reveal that 2 outperforms its curcumin Ru(II) complex (1) analog in solution stability, organelle specificity, and cellular mechanisms. Both 1 and 2 exhibit phototherapeutic effects under low-intensity visible light, but their chemotoxicity significantly increases with incubation time in the dark, highlighting the superior chemotherapeutic efficacy of the O,O-coordinating Ru(II) ternary polypyridyl complexes. Complex 2 induces apoptosis via the intrinsic pathway and shows a 9-fold increase in selectivity for pancreatic cancer cells (MIA PaCa-2) over non-cancerous HEK293 cells when encapsulated in the glucose-conjugated polymer (DP@2). Glucose deprivation in the culture medium further enhances drug efficacy by an additional 5-fold. This work underscores the potential of glucose-functionalized polymers and ROS-responsive Ru(II) complexes in targeted cancer therapy.
Collapse
Affiliation(s)
- Souryadip Roy
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| | - Soumya Paul
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| | - Sujato Mukherjee
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| | - Priyadarsi De
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| | - Arindam Mukherjee
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, Mohanpur, 741246, India
| |
Collapse
|
2
|
Langley A, Sweeney A, Shethia RT, Bednarke B, Wulandana F, Xavierselvan M, Mallidi S. In vivo, online label-free monitoring of heterogenous oxygen utilization during phototherapy with real-time ultrasound-guided photoacoustic imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625759. [PMID: 39677615 PMCID: PMC11642742 DOI: 10.1101/2024.11.27.625759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Understanding the tumor microenvironment, particularly the vascular density and the availability of oxygen, is key in individualizing treatment approaches and determining their efficacy. While there are many therapies including radiotherapy that are ineffective in hypoxic tumor microenvironments, here we demonstrate the heterogeneous oxygen consumption during photodynamic therapy (PDT), a non-invasive treatment method using localized light to activate a photosensitive drug in the presence of oxygen that has shown high effectiveness in the treatment of various types of tumors, including those presented in head and neck cancer (HNC) patients. While our previous work has demonstrated that blood oxygen saturation (StO2) mapped before and after treatment with ultrasound-guided photoacoustic imaging (US-PAI) can be used as a surrogate marker for the regionalized long-term efficacy of PDT, real-time monitoring of StO2 during PDT could provide additional insights on oxygen consumption and inform dose design for "on the spot" treatment decisions. Specifically, in this work, we integrated the US-PAI transducer probe with PDT light delivery fibers. We tested the setup on murine tumor models intravenously injected with liposomal benzoporphyrin derivative (BPD) photosensitizer at 0.5 mg/kg dose and photodynamic illumination at 100 and 400 mW/cm2 fluence rate. As expected, we observed with our US-PAI StO2 images that the rate of oxygen utilization increases when using a high fluence rate (HFR) light dose. Particularly in the higher fluence rate group, we observed StO2 reaching a minimum mid-light dose, followed by some degree of reoxygenation. US-PAI added the advantage of spatial information to StO2 monitoring, which allowed us to match regions of re-oxygenation during therapy to retained vascular function with immunohistochemistry. Overall, our results have demonstrated the potential of US-PAI for applications in online dosimetry for cancer therapies such as PDT, using oxygen changes to detect regionalized physiological vascular response in the tumor microenvironment.
Collapse
Affiliation(s)
- Andrew Langley
- Department of Biomedical Engineering, Tufts University, MA, USA
| | - Allison Sweeney
- Department of Biomedical Engineering, Tufts University, MA, USA
| | - Ronak T Shethia
- Department of Biomedical Engineering, Tufts University, MA, USA
| | - Brooke Bednarke
- Department of Biomedical Engineering, Tufts University, MA, USA
| | | | | | | |
Collapse
|
3
|
Gao R, Liu Y, Qi S, Song L, Meng J, Liu C. Influence mechanism of the temporal duration of laser irradiation on photoacoustic technique: a review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11530. [PMID: 38632983 PMCID: PMC11021737 DOI: 10.1117/1.jbo.29.s1.s11530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Significance In the photoacoustic (PA) technique, the laser irradiation in the time domain (i.e., laser pulse duration) governs the characteristics of PA imaging-it plays a crucial role in the optical-acoustic interaction, the generation of PA signals, and the PA imaging performance. Aim We aim to provide a comprehensive analysis of the impact of laser pulse duration on various aspects of PA imaging, encompassing the signal-to-noise ratio, the spatial resolution of PA imaging, the acoustic frequency spectrum of the acoustic wave, the initiation of specific physical phenomena, and the photothermal-PA (PT-PA) interaction/conversion. Approach By surveying and reviewing the state-of-the-art investigations, we discuss the effects of laser pulse duration on the generation of PA signals in the context of biomedical PA imaging with respect to the aforementioned aspects. Results First, we discuss the impact of laser pulse duration on the PA signal amplitude and its correlation with the lateral resolution of PA imaging. Subsequently, the relationship between the axial resolution of PA imaging and the laser pulse duration is analyzed with consideration of the acoustic frequency spectrum. Furthermore, we examine the manipulation of the pulse duration to trigger physical phenomena and its relevant applications. In addition, we elaborate on the tuning of the pulse duration to manipulate the conversion process and ratio from the PT to PA effect. Conclusions We contribute to the understanding of the physical mechanisms governing pulse-width-dependent PA techniques. By gaining insight into the mechanism behind the influence of the laser pulse, we can trigger the pulse-with-dependent physical phenomena for specific PA applications, enhance PA imaging performance in biomedical imaging scenarios, and modulate PT-PA conversion by tuning the pulse duration precisely.
Collapse
Affiliation(s)
- Rongkang Gao
- Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen, China
| | - Yan Liu
- Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen, China
- Qufu Normal University, School of Cyberspace Security, Qufu, China
| | - Sumin Qi
- Qufu Normal University, School of Cyberspace Security, Qufu, China
| | - Liang Song
- Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen, China
| | - Jing Meng
- Qufu Normal University, School of Cyberspace Security, Qufu, China
| | - Chengbo Liu
- Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen, China
| |
Collapse
|
4
|
Lu B, Wang L, Tang H, Cao D. Recent advances in type I organic photosensitizers for efficient photodynamic therapy for overcoming tumor hypoxia. J Mater Chem B 2023; 11:4600-4618. [PMID: 37183673 DOI: 10.1039/d3tb00545c] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Photodynamic therapy (PDT) with an oxygen-dependent character is a noninvasive therapeutic method for cancer treatment. However, its clinical therapeutic effect is greatly restricted by tumor hypoxia. What's more, both PDT-mediated oxygen consumption and microvascular damage aggravate tumor hypoxia, thus, further impeding therapeutic outcomes. Compared to type II PDT with high oxygen dependence and high oxygen consumption, type I PDT with less oxygen consumption exhibits great potential to overcome the vicious hypoxic plight in solid tumors. Type I photosensitizers (PSs) are significantly important for determining the therapeutic efficacy of PDT, which performs an electron transfer photochemical reaction with the surrounding oxygen/substrates to generate highly cytotoxic free radicals such as superoxide radicals (˙O2-) as type I ROS. In particular, the primary precursor (˙O2-) would progressively undergo a superoxide dismutase (SOD)-mediated disproportionation reaction and a Haber-Weiss/Fenton reaction, yielding higher cytotoxic species (˙OH) with better anticancer effects. As a result, developing high-performance type I PSs to treat hypoxic tumors has become more and more important and urgent. Herein, the latest progress of organic type I PSs (such as AIE-active cationic/neutral PSs, cationic/neutral PSs, polymer-based PSs and supramolecular self-assembled PSs) for monotherapy or synergistic therapeutic modalities is summarized. The molecular design principles and strategies (donor-acceptor system, anion-π+ incorporation, polymerization and cationization) are highlighted. Furthermore, the future challenges and prospects of type I PSs in hypoxia-overcoming PDT are proposed.
Collapse
Affiliation(s)
- Bingli Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| |
Collapse
|
5
|
Du Q, Yi M, Li H, Liu J, Guan C, Zeng Y, Xiong H, Wang X, Zhong J, Wu Y, Tan H, Han D, Wang M. Multi-level optical angiography for photodynamic therapy. BIOMEDICAL OPTICS EXPRESS 2023; 14:1082-1095. [PMID: 36950238 PMCID: PMC10026572 DOI: 10.1364/boe.473644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Blood flow imaging is widely applied in photodynamic therapy (PDT) to provide vascular morphological and statistical parameters. This approach relies on the intensity of time-domain signal differences between blood vessels and background tissues; therefore, it often ignores differences within the vasculature and cannot accommodate abundant structural information. This study proposes a multi-level optical angiography (MOA) method for PDT. It can enhance capillaries and image vessels at different levels by measuring the signal frequency shift associated with red blood cell motion. The experimental results regarding the PDT-induced chorioallantoic membrane model showed that the proposed method could not only perform multi-level angiography but also provide more accurate quantitative information regarding various vascular parameters. This MOA method has potential applications in PDT studies.
Collapse
Affiliation(s)
- Qianyi Du
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Min Yi
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Hongyi Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Jiayi Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Caizhong Guan
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Yaguang Zeng
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Honglian Xiong
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Xuehua Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Junping Zhong
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Yanxiong Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Haishu Tan
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Dingan Han
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Mingyi Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China
| |
Collapse
|
6
|
Gao R, Xue Q, Ren Y, Zhang H, Song L, Liu C. Achieving depth-independent lateral resolution in AR-PAM using the synthetic-aperture focusing technique. PHOTOACOUSTICS 2022; 26:100328. [PMID: 35242539 PMCID: PMC8861412 DOI: 10.1016/j.pacs.2021.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Acoustic-resolution photoacoustic microscopy (AR-PAM) is a promising imaging modality that renders images with ultrasound resolution and extends the imaging depth beyond the optical ballistic regime. To achieve a high lateral resolution, a large numerical aperture (NA) of a focused transducer is usually applied for AR-PAM. However, AR-PAM fails to hold its performance in the out-of-focus region. The lateral resolution and signal-to-noise ratio (SNR) degrade substantially, thereby leading to a significantly deteriorated image quality outside the focal area. Based on the concept of the synthetic-aperture focusing technique (SAFT), various strategies have been developed to address this challenge. These include 1D-SAFT, 2D-SAFT, adaptive-SAFT, spatial impulse response (SIR)-based schemes, and delay-multiply-and-sum (DMAS) strategies. These techniques have shown progress in achieving depth-independent lateral resolution, while several challenges remain. This review aims to introduce these developments in SAFT-based approaches, highlight their fundamental mechanisms, underline the advantages and limitations of each approach, and discuss the outlook of the remaining challenges for future advances.
Collapse
Affiliation(s)
- Rongkang Gao
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiang Xue
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, The Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Yaguang Ren
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hai Zhang
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, The Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Shenzhen 518020, China
- Department of Ultrasound, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author.
| |
Collapse
|
7
|
Background-suppressed tumor-targeted photoacoustic imaging using bacterial carriers. Proc Natl Acad Sci U S A 2022; 119:2121982119. [PMID: 35193966 PMCID: PMC8872805 DOI: 10.1073/pnas.2121982119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 01/02/2023] Open
Abstract
Photoacoustic (PA) imaging offers promise for biomedical applications due to its ability to image deep within biological tissues while providing detailed molecular information; however, its detection sensitivity is limited by high background signals that arise from endogenous chromophores. Genetic reporter proteins with photoswitchable properties enable the removal of background signals through the subtraction of PA images for each light-absorbing form. Unfortunately, the application of photoswitchable chromoproteins for tumor-targeted imaging has been hampered by the lack of an effective targeted delivery scheme; that is, photoswitchable probes must be delivered in vivo with high targeting efficiency and specificity. To overcome this limitation, we have developed a tumor-targeting delivery system in which tumor-homing bacteria (Escherichia coli) are exploited as carriers to affect the point-specific delivery of genetically encoded photochromic probes to the tumor area. To improve the efficiency of the desired background suppression, we engineered a phytochrome-based reporter protein (mDrBphP-PCMm/F469W) that displays higher photoswitching contrast than those in the current state of the art. Photoacoustic computed tomography was applied to achieve good depth and resolution in the context of in vivo (mice) imaging. The present system effectively integrates a genetically encoded phytochrome-based reporter protein, PA imaging, and synthetic biology (GPS), to achieve essentially background-suppressed tumor-targeted PA monitoring in deep-seated tissues. The ability to image tumors at substantial depths may enable target-specific cancer diagnoses to be made with greater sensitivity, fidelity, and specificity.
Collapse
|
8
|
Wang L, Li G, Cao L, Shao K, Li Y, Zhang X, Zhao J, Zhao W. Novel Water-Soluble Chlorin-Based Photosensitizer for Low-Fluence Photodynamic Therapy. ACS Pharmacol Transl Sci 2022; 5:110-117. [PMID: 35187418 PMCID: PMC8844960 DOI: 10.1021/acsptsci.1c00249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 01/23/2023]
Abstract
Photodynamic therapy (PDT), performed with low-fluence rates, can improve antitumor responses and prevent adverse effects. However, photosensitizers (PSs) for low-fluence PDT treatment are rarely reported. Herein, we exploited an amphiphilic chlorin-based PS, named DYSP-C34, which has a variety of beneficial biological properties, such as improved water solubility, better cellular permeability, specific localization and enhanced phototoxicity under low light dose irradiation. In addition, DYSP-C34 could effectively accumulate in a mouse subcutaneous xenograft tumor and exhibit substantial tumor regression after irradiation with an extremely low light fluence (6 J/cm2). Meanwhile, the excellent phototoxicity could stimulate the host immune system and lead to a strong inhibition of tumor growth synergistically. These results indicated the potential value of DYSP-C34 as a chlorin-type PS for low-fluence PDT application.
Collapse
Affiliation(s)
- Liu Wang
- State
Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences,
School of Chemical Engineering, Dalian University
of Technology, Dalian 116024, China
| | - Guangzhe Li
- State
Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences,
School of Chemical Engineering, Dalian University
of Technology, Dalian 116024, China
| | - Lei Cao
- State
Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences,
School of Chemical Engineering, Dalian University
of Technology, Dalian 116024, China
| | - Kun Shao
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yueqing Li
- State
Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences,
School of Chemical Engineering, Dalian University
of Technology, Dalian 116024, China
| | - Xi Zhang
- State
Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences,
School of Chemical Engineering, Dalian University
of Technology, Dalian 116024, China
| | - Jianzhang Zhao
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weijie Zhao
- State
Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences,
School of Chemical Engineering, Dalian University
of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Zhou R, Ohulchanskyy TY, Xu H, Ziniuk R, Qu J. Catalase Nanocrystals Loaded with Methylene Blue as Oxygen Self-Supplied, Imaging-Guided Platform for Photodynamic Therapy of Hypoxic Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103569. [PMID: 34532978 DOI: 10.1002/smll.202103569] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) is a well-known method for cancer therapy in the clinic. However, the inherent hypoxia microenvironment of solid tumors enormously restricts the PDT efficiency. Herein, catalase nanocrystals (CatCry) are introduced as in situ oxygen (O2 )-generating system to relieve tumor hypoxia and enhance PDT efficiency for solid tumors. After loading with photosensitizer methylene blue (MB), a PDT drug platform (CatCry-MB) emerges, allowing for significant increasing PDT efficiency instigated by three factors. First, the high stability and recyclable catalytic activity of CatCry enable a long-term endogenous H2 O2 decomposition for continuous O2 supply for sustained relief of tumor hypoxia. Second, both the produced O2 and loaded MB are confined within CatCry nanoporous structure, shortening the diffusion distance between O2 and MB to maximize the production of singlet oxygen (1 O2 ). Third, the MB molecules are uniformly dispersed within CatCry lattice, avoiding MB aggregation and causing more MB molecules be activated to produce more 1 O2 . With the three complementary mechanisms, tumor hypoxia is eradicated and the resulted enhancement in PDT efficiency is demonstrated in vitro and in vivo. The proposed approach opens up a new venue for the development of other O2 -dependent tumor treatments, such as chemotherapy, radiotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Renbin Zhou
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tymish Y Ohulchanskyy
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hao Xu
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Roman Ziniuk
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Junle Qu
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|