1
|
Vahur S, Treshchalov A, Lohmus R, Teearu A, Niman K, Hiiop H, Kikas J, Leito I. Laser-based analytical techniques in cultural heritage science - Tutorial review. Anal Chim Acta 2024; 1292:342107. [PMID: 38309841 DOI: 10.1016/j.aca.2023.342107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 02/05/2024]
Abstract
This tutorial review combines the fundamentals of the design and operation of lasers with their usage in applications related to conservation and cultural heritage (CH) science - as components of analytical devices for the study of the chemical composition of materials. The development of laser instruments and their fundamental physical background, including a short explanation of their properties and parameters, are briefly summarised, and an overview of different laser-based analytical techniques is given. The analytical techniques covered in this tutorial are divided into three groups based on their technical aspects and properties: (1) vibrational spectroscopy, (2) elemental analysis, and (3) different molecular mass spectrometric techniques.
Collapse
Affiliation(s)
- Signe Vahur
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411, Tartu, Estonia.
| | - Alexey Treshchalov
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
| | - Rynno Lohmus
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
| | - Anu Teearu
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| | - Käthi Niman
- Department of Cultural Heritage and Conservation, Estonian Academy of Arts, Põhja pst 7, 10412, Tallinn, Estonia
| | - Hilkka Hiiop
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411, Tartu, Estonia; Department of Cultural Heritage and Conservation, Estonian Academy of Arts, Põhja pst 7, 10412, Tallinn, Estonia
| | - Jaak Kikas
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| |
Collapse
|
2
|
Chip-scale high-peak-power semiconductor/solid-state vertically integrated laser. Nat Commun 2022; 13:5774. [PMID: 36182934 PMCID: PMC9526722 DOI: 10.1038/s41467-022-33528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/22/2022] [Indexed: 11/12/2022] Open
Abstract
Compact lasers capable of producing kilowatt class peak power are highly desirable for applications in various fields, including laser remote sensing, laser micromachining, and biomedical photonics. In this paper, we propose a high-peak-power chip-scale semiconductor/solid-state vertically integrated laser in which two cavities are optically coupled at the solid-state laser gain medium. The first cavity is for the intra-pumping of ytterbium-doped yttrium aluminum garnet (Yb:YAG) with an electrically driven indium gallium arsenide (InGaAs) quantum well, and the second cavity consists of Yb:YAG and chromium-doped yttrium aluminum garnet (Cr:YAG) for passive Q-switching. The proposed laser produces pulses as short as 450 ps, and an estimated peak power of 57.0 kW with a laser chip dimension of 1 mm3. To the best of our knowledge, this is the first monolithic integration of semiconductor and solid-state laser gain mediums to realize a compact high-peak-power laser. Here the authors demonstrate chip-scale high-peak-power lasers by vertical integration of semiconductor and solid state laser gain mediums to reach the same maturity level as existing semiconductor lasers, which are suitable for miniaturization and cost-effective mass production.
Collapse
|