1
|
Hu Y, Feng Y, Long X, Zheng D, Liu G, Lu Y, Ren Q, Huang Z. Megahertz multi-parametric ophthalmic OCT system for whole eye imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:3000-3017. [PMID: 38855668 PMCID: PMC11161356 DOI: 10.1364/boe.517757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024]
Abstract
An ultrahigh-speed, wide-field OCT system for the imaging of anterior, posterior, and ocular biometers is crucial for obtaining comprehensive ocular parameters and quantifying ocular pathology size. Here, we demonstrate a multi-parametric ophthalmic OCT system with a speed of up to 1 MHz for wide-field imaging of the retina and 50 kHz for anterior chamber and ocular biometric measurement. A spectrum correction algorithm is proposed to ensure the accurate pairing of adjacent A-lines and elevate the A-scan speed from 500 kHz to 1 MHz for retinal imaging. A registration method employing position feedback signals was introduced, reducing pixel offsets between forward and reverse galvanometer scanning by 2.3 times. Experimental validation on glass sheets and the human eye confirms feasibility and efficacy. Meanwhile, we propose a revised formula to determine the "true" fundus size using all-axial length parameters from different fields of view. The efficient algorithms and compact design enhance system compatibility with clinical requirements, showing promise for widespread commercialization.
Collapse
Affiliation(s)
- Yicheng Hu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518071, China
| | - Yutao Feng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- The College of Biochemical Engineering, Beijing Union University, Beijing 100021, China
| | - Xing Long
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Dongye Zheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518071, China
| | - Gangjun Liu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518071, China
| | - Yanye Lu
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518071, China
| | - Zhiyu Huang
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518071, China
| |
Collapse
|
2
|
Valentín-Bravo FJ, Stanga PE, Reinstein UI, Stanga SEF, Martínez-Tapia SA, Pastor-Idoate S. Silicone oil emulsification: A literature review and role of widefield imaging and ultra-widefield imaging with navigated central and peripheral optical coherence tomography technology. Saudi J Ophthalmol 2024; 38:112-122. [PMID: 38988778 PMCID: PMC11232747 DOI: 10.4103/sjopt.sjopt_193_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 07/12/2024] Open
Abstract
Silicone oil (SO) emulsification is a significant concern in vitreoretinal surgery, leading to various complications. Despite the high prevalence of SO emulsification within the eye, there is currently no standardized method for its early detection. The recent introduction of widefield (WF) imaging and ultra-WF (UWF) imaging with navigated central and peripheral optical coherence tomography (OCT) techniques have shown promising results in providing high-resolution images of the peripheral vitreous, vitreoretinal interface, retina, and choroid. This enhanced visualization capability enables the early identification of emulsified SO droplets, facilitating a proactive therapeutic approach, and mitigating associated adverse events. This comprehensive literature review aims to provide an updated overview of the topic, focusing on the role of WFimaging and UWF imaging and navigated central and peripheral swept-source OCT (SS-OCT) in the early detection and management of SO emulsification. The review discusses the current understanding of SO emulsification, its associated complications, and the limitations of existing detection methods. In addition, it highlights the potential of WF and UWF imaging and peripheral OCT as advanced imaging modalities for improved visualization of SO emulsification. This review serves as a valuable resource for clinicians and researchers, providing insights into the latest advancements in the field of vitreoretinal surgery and the promising role of WF imaging and UWF imaging and navigated central and peripheral SS-OCT in the management of SO.
Collapse
Affiliation(s)
| | - Paulo E. Stanga
- The Retina Clinic London, London, UK
- Department of Ophthalmology, Institute of Ophthalmology, University College London, London, UK
| | | | | | | | - Salvador Pastor-Idoate
- Department of Ophthalmology, Clinical University Hospital, Valladolid, Spain
- Department of Ophthalmology, Ioba Eye Institute, University of Valladolid, Valladolid, Spain
- Networks of Cooperative Research Oriented to Health Results (RICORS), National Institute of Health Carlos III, ISCIII, Madrid, Spain
| |
Collapse
|
3
|
Urizar MP, Gambra E, de Castro A, de la Peña Á, Cetinkaya O, Marcos S, Curatolo A. Optical beam scanner with reconfigurable non-mechanical control of beam position, angle, and focus for low-cost whole-eye OCT imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:4468-4484. [PMID: 37791284 PMCID: PMC10545213 DOI: 10.1364/boe.493917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 10/05/2023]
Abstract
Whole-eye optical coherence tomography (OCT) imaging is a promising tool in ocular biometry for cataract surgery planning, glaucoma diagnostics and myopia progression studies. However, conventional OCT systems are set up to perform either anterior or posterior eye segment scans and cannot easily switch between the two scan configurations without adding or exchanging optical components to account for the refraction of the eye's optics. Even in state-of-the-art whole-eye OCT systems, the scan configurations are pre-selected and cannot be dynamically reconfigured. In this work, we present the design, optimization and experimental validation of a reconfigurable and low-cost optical beam scanner based on three electro-tunable lenses, capable of non-mechanically controlling the beam position, angle and focus. We derive the analytical theory behind its control. We demonstrate its use in performing alternate anterior and posterior segment imaging by seamlessly switching between a telecentric focused beam scan to an angular collimated beam scan. We characterize the corresponding beam profiles and record whole-eye OCT images in a model eye and in an ex vivo rabbit eye, observing features comparable to those obtained with conventional anterior and posterior OCT scanners. The proposed beam scanner reduces the complexity and cost of other whole-eye scanners and is well suited for 2-D ocular biometry. Additionally, with the added versatility of seamless scan reconfiguration, its use can be easily expanded to other ophthalmic applications and beyond.
Collapse
Affiliation(s)
- María Pilar Urizar
- 2EyesVision S.L., Madrid, Spain
- Instituto de Óptica “Daza de Valdés”, Consejo Superior de Investigaciones Científicas (IO, CSIC), Spain
| | | | - Alberto de Castro
- Instituto de Óptica “Daza de Valdés”, Consejo Superior de Investigaciones Científicas (IO, CSIC), Spain
| | - Álvaro de la Peña
- Instituto de Óptica “Daza de Valdés”, Consejo Superior de Investigaciones Científicas (IO, CSIC), Spain
| | - Onur Cetinkaya
- International Centre for Translational Eye Research (ICTER), Institute of Physical Chemistry, Polish Academy of Sciences (IPC-PAS), Warsaw, Poland
| | - Susana Marcos
- Instituto de Óptica “Daza de Valdés”, Consejo Superior de Investigaciones Científicas (IO, CSIC), Spain
- The Institute of Optics and Flaum Eye Institute, Center for Visual Sciences, University of Rochester, New York, USA
| | - Andrea Curatolo
- Instituto de Óptica “Daza de Valdés”, Consejo Superior de Investigaciones Científicas (IO, CSIC), Spain
- International Centre for Translational Eye Research (ICTER), Institute of Physical Chemistry, Polish Academy of Sciences (IPC-PAS), Warsaw, Poland
| |
Collapse
|
4
|
Rosenfeld PJ, Cheng Y, Shen M, Gregori G, Wang RK. Unleashing the power of optical attenuation coefficients to facilitate segmentation strategies in OCT imaging of age-related macular degeneration: perspective. BIOMEDICAL OPTICS EXPRESS 2023; 14:4947-4963. [PMID: 37791280 PMCID: PMC10545179 DOI: 10.1364/boe.496080] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 10/05/2023]
Abstract
The use of optical attenuation coefficients (OAC) in optical coherence tomography (OCT) imaging of the retina has improved the segmentation of anatomic layers compared with traditional intensity-based algorithms. Optical attenuation correction has improved our ability to measure the choroidal thickness and choroidal vascularity index using dense volume scans. Algorithms that combine conventional intensity-based segmentation with depth-resolved OAC OCT imaging have been used to detect elevations of the retinal pigment epithelium (RPE) due to drusen and basal laminar deposits, the location of hyperpigmentation within the retina and along the RPE, the identification of macular atrophy, the thickness of the outer retinal (photoreceptor) layer, and the presence of calcified drusen. OAC OCT algorithms can identify the risk-factors that predict disease progression in age-related macular degeneration.
Collapse
Affiliation(s)
- Philip J. Rosenfeld
- Department of Ophthalmology, Bascom Palmer
Eye Institute, University of Miami Miller School of
Medicine, Miami, Florida, USA
| | - Yuxuan Cheng
- Department of Bioengineering,
University of Washington, Seattle,
Washington, USA
| | - Mengxi Shen
- Department of Ophthalmology, Bascom Palmer
Eye Institute, University of Miami Miller School of
Medicine, Miami, Florida, USA
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer
Eye Institute, University of Miami Miller School of
Medicine, Miami, Florida, USA
| | - Ruikang K. Wang
- Department of Bioengineering,
University of Washington, Seattle,
Washington, USA
- Department of Ophthalmology,
University of Washington, Seattle,
Washington, USA
| |
Collapse
|
5
|
Alexopoulos P, Madu C, Wollstein G, Schuman JS. The Development and Clinical Application of Innovative Optical Ophthalmic Imaging Techniques. Front Med (Lausanne) 2022; 9:891369. [PMID: 35847772 PMCID: PMC9279625 DOI: 10.3389/fmed.2022.891369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
The field of ophthalmic imaging has grown substantially over the last years. Massive improvements in image processing and computer hardware have allowed the emergence of multiple imaging techniques of the eye that can transform patient care. The purpose of this review is to describe the most recent advances in eye imaging and explain how new technologies and imaging methods can be utilized in a clinical setting. The introduction of optical coherence tomography (OCT) was a revolution in eye imaging and has since become the standard of care for a plethora of conditions. Its most recent iterations, OCT angiography, and visible light OCT, as well as imaging modalities, such as fluorescent lifetime imaging ophthalmoscopy, would allow a more thorough evaluation of patients and provide additional information on disease processes. Toward that goal, the application of adaptive optics (AO) and full-field scanning to a variety of eye imaging techniques has further allowed the histologic study of single cells in the retina and anterior segment. Toward the goal of remote eye care and more accessible eye imaging, methods such as handheld OCT devices and imaging through smartphones, have emerged. Finally, incorporating artificial intelligence (AI) in eye images has the potential to become a new milestone for eye imaging while also contributing in social aspects of eye care.
Collapse
Affiliation(s)
- Palaiologos Alexopoulos
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Chisom Madu
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
| | - Joel S. Schuman
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
- Department of Electrical and Computer Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
6
|
Puyo L, David C, Saad R, Saad S, Gautier J, Sahel JA, Borderie V, Paques M, Atlan M. Laser Doppler holography of the anterior segment for blood flow imaging, eye tracking, and transparency assessment. BIOMEDICAL OPTICS EXPRESS 2021; 12:4478-4495. [PMID: 34457427 PMCID: PMC8367265 DOI: 10.1364/boe.425272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 05/04/2023]
Abstract
Laser Doppler holography (LDH) is a full-field blood flow imaging technique able to reveal human retinal and choroidal blood flow with high temporal resolution. We here report on using LDH in the anterior segment of the eye without making changes to the instrument. Blood flow in the bulbar conjunctiva and episclera as well as in corneal neovascularization can be effectively imaged. We additionally demonstrate simultaneous holographic imaging of the anterior and posterior segments by simply adapting the numerical propagation distance to the plane of interest. We used this feature to track the movements of the retina and pupil with high temporal resolution. Finally, we show that the light backscattered by the retina can be used for retro-illumination of the anterior segment. Hence digital holography can reveal opacities caused by absorption or diffusion in the cornea and eye lens.
Collapse
Affiliation(s)
- Léo Puyo
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
- Paris Eye Imaging, France
- Institute of Biomedical Optics, University of Lübeck. Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Clémentine David
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
| | - Rana Saad
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
- Paris Eye Imaging, France
| | - Sami Saad
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
| | - Josselin Gautier
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
- Paris Eye Imaging, France
| | - José Alain Sahel
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
- Paris Eye Imaging, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 17 Rue Moreau, 75012 Paris, France
| | - Vincent Borderie
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
| | - Michel Paques
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, 28 rue de Charenton, 75012 Paris, France
- Paris Eye Imaging, France
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 17 Rue Moreau, 75012 Paris, France
| | - Michael Atlan
- Paris Eye Imaging, France
- Institut Langevin, CNRS, PSL University, ESPCI Paris, 1 rue Jussieu, 75005 Paris, France
| |
Collapse
|