1
|
Mordi A, Karunakaran V, Marium Mim U, Marple E, Rajaram N. Design and Validation of a Multimodal Diffuse Reflectance and Spatially Offset Raman Spectroscopy System for In Vivo Applications. JOURNAL OF BIOPHOTONICS 2025; 18:e202400333. [PMID: 39721981 PMCID: PMC11884968 DOI: 10.1002/jbio.202400333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
We report on the development of a multimodal spectroscopy system, combining diffuse reflectance spectroscopy (DRS) and spatially offset Raman spectroscopy (SORS). A fiber optic probe was designed with spatially offset source-detector fibers to collect subsurface measurements for each modality, as well as ball lens-coupled fibers for superficial measurements. The system acquires DRS, zero-offset Raman spectroscopy (RS) and SORS with good signal-to-noise ratio. Measurements on chicken breast tissue demonstrate that both DRS and RS can acquire spectra from similar depths within tissue. Measurements acquired from the skin of a human volunteer demonstrate distinct Raman peaks at 937 and 1755 cm-1 that were unique to the zero-offset ball lens configuration and 718 and 1089 cm-1 for the spatially offset setting. We also identified Raman peaks corresponding to melanin that were prominent in the superficial measurements obtained with the ball lens-coupled fibers but not in the spatially offset fibers.
Collapse
Affiliation(s)
- April Mordi
- Department of Biomedical EngineeringUniversity of ArkansasFayettevilleArkansasUSA
| | - Varsha Karunakaran
- Department of Biomedical EngineeringUniversity of ArkansasFayettevilleArkansasUSA
| | - Umme Marium Mim
- Department of Biomedical EngineeringUniversity of ArkansasFayettevilleArkansasUSA
| | | | - Narasimhan Rajaram
- Department of Biomedical EngineeringUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
2
|
Drewke EE, Brand RL, Geels CG, Jensen HK, Wong K, Sanders JD, Rajaram N. Noncontact Diffuse Reflectance Spectroscopy of Synovial Fluid Samples for Rapid Identification of Infections. JOURNAL OF BIOPHOTONICS 2024; 17:e202400213. [PMID: 39233380 DOI: 10.1002/jbio.202400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024]
Abstract
Severe joint infections, such as septic arthritis, require rapid diagnostic testing of the synovial fluid aspirated from joints level so that a surgical team can be assembled quickly. We present a diffuse reflectance spectroscopy (DRS) system for noncontact determination of infection. Using a light-tight syringe holder and fiber optic probe, diffusely reflected light from 475 to 655 nm was acquired from 18 patient samples through the wall of a syringe in a noncontact and sterile manner. We determined the reflectance ratios at two different wavelengths-R 490/R 600 and R 580/R 600 and found statistically significant differences (p < 0.05) in both ratios between the infected and noninfected groups. Critically, the R 490/R 600 and R 580/R 600 ratios were significantly correlated with clinical biomarkers-the white blood cell (WBC) and red blood cell (RBC) counts, respectively. This study demonstrates the potential of DRS as a rapid diagnostic tool for joint infections.
Collapse
Affiliation(s)
- Erin E Drewke
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Robert L Brand
- College of Medicine, University of Arkansas for Medical Sciences, Fayetteville, Arkansas, USA
| | - Caroline G Geels
- College of Medicine, University of Arkansas for Medical Sciences, Fayetteville, Arkansas, USA
| | - Hanna K Jensen
- Department of Surgery, University of Arkansas for Medical Sciences, Fayetteville, Arkansas, USA
| | - Kevin Wong
- Department of Radiology, University of South Alabama, Mobile, Alabama, USA
| | | | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
3
|
Dehdari M, Jazi B, Khosravi F. A Theoretical Explanation for the Existence of Certain Maxima in the Visible Spectrum Pattern of Wave Scattering from Spherical Metal-Dielectric-Janus Nanoparticles Based on Surface Plasmon Excitation. PLASMONICS 2024. [DOI: 10.1007/s11468-024-02447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/18/2024] [Indexed: 01/06/2025]
|
4
|
Rodriguez Troncoso J, Marium Mim U, Ivers JD, Paidi SK, Harper MG, Nguyen KG, Ravindranathan S, Rebello L, Lee DE, Zaharoff DA, Barman I, Rajaram N. Evaluating differences in optical properties of indolent and aggressive murine breast tumors using quantitative diffuse reflectance spectroscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:6114-6126. [PMID: 38420330 PMCID: PMC10898562 DOI: 10.1364/boe.505153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 03/02/2024]
Abstract
We used diffuse reflectance spectroscopy to quantify tissue absorption and scattering-based parameters in similarly sized tumors derived from a panel of four isogenic murine breast cancer cell lines (4T1, 4T07, 168FARN, 67NR) that are each capable of accomplishing different steps of the invasion-metastasis cascade. We found lower tissue scattering, increased hemoglobin concentration, and lower vascular oxygenation in indolent 67NR tumors incapable of metastasis compared with aggressive 4T1 tumors capable of metastasis. Supervised learning statistical approaches were able to accurately differentiate between tumor groups and classify tumors according to their ability to accomplish each step of the invasion-metastasis cascade. We investigated whether the inhibition of metastasis-promoting genes in the highly metastatic 4T1 tumors resulted in measurable optical changes that made these tumors similar to the indolent 67NR tumors. These results demonstrate the potential of diffuse reflectance spectroscopy to noninvasively evaluate tumor biology and discriminate between indolent and aggressive tumors.
Collapse
Affiliation(s)
| | - Umme Marium Mim
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jesse D. Ivers
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Santosh K. Paidi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mason G. Harper
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Khue G. Nguyen
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Sruthi Ravindranathan
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Lisa Rebello
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - David E. Lee
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Exercise Science, University of Arkansas, Fayetteville, AR 72703, USA
| | - David A. Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
5
|
Jules A, Means D, Troncoso JR, Fernandes A, Dadgar S, Siegel ER, Rajaram N. Diffuse Reflectance Spectroscopy of Changes in Tumor Microenvironment in Response to Different Doses of Radiation. Radiat Res 2022; 198:545-552. [PMID: 36240754 PMCID: PMC9798304 DOI: 10.1667/rade-21-00228.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 09/28/2022] [Indexed: 12/31/2022]
Abstract
Radiation therapy plays an important role in cancer treatment, as it is an established method used as part of the treatment plan for the majority of cancer patients. Real-time monitoring of the effects of radiation on the tumor microenvironment can contribute to the development of better treatment plans. In this study, we use diffuse reflectance spectroscopy, a non-invasive optical fiber-based technique, to determine the effects of different doses of radiation on the tumor microenvironment, as well as to determine the sensitivity of diffuse reflectance spectroscopy to low doses of radiation that are used in the treatment of certain cancers. We injected 4T1 cells into 50 Balb/c mice to generate tumor xenografts. When the tumors grew to 200 mm3, we distributed the mice into a control group or one of three radiation groups: 1, 2, or 4 Gy/fraction, and they underwent treatment for five consecutive days. We measured the tumor volume and collected diffuse reflectance spectra every day, with optical measurements being acquired both before and one h postirradiation on the five days of treatment. Based on the diffusely reflected light, we quantified vascular oxygenation, total hemoglobin content, and tissue scattering within these tumors. There was a significant increase in tumor vascular oxygenation, which was primarily due to an increase in oxygenated hemoglobin, in response to a 1 Gy/fraction of radiation, while there was a decrease in tissue scattering in response to all doses of radiation. Immunohistochemical analysis revealed that tumor cell proliferation and apoptosis were higher in irradiated groups compared to the control group. Our findings show that diffuse reflectance spectroscopy is sensitive to microenvironmental changes in tumors treated with doses of radiation as low as 1 Gy/fraction.
Collapse
Affiliation(s)
- April Jules
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Davin Means
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | | | - Alric Fernandes
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Sina Dadgar
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
6
|
Paidi SK, Rodriguez Troncoso J, Raj P, Monterroso Diaz P, Ivers JD, Lee DE, Avaritt NL, Gies AJ, Quick CM, Byrum SD, Tackett AJ, Rajaram N, Barman I. Raman Spectroscopy and Machine Learning Reveals Early Tumor Microenvironmental Changes Induced by Immunotherapy. Cancer Res 2021; 81:5745-5755. [PMID: 34645610 DOI: 10.1158/0008-5472.can-21-1438] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Cancer immunotherapy provides durable clinical benefit in only a small fraction of patients, and identifying these patients is difficult due to a lack of reliable biomarkers for prediction and evaluation of treatment response. Here, we demonstrate the first application of label-free Raman spectroscopy for elucidating biomolecular changes induced by anti-CTLA4 and anti-PD-L1 immune checkpoint inhibitors (ICI) in the tumor microenvironment (TME) of colorectal tumor xenografts. Multivariate curve resolution-alternating least squares (MCR-ALS) decomposition of Raman spectral datasets revealed early changes in lipid, nucleic acid, and collagen content following therapy. Support vector machine classifiers and random forests analysis provided excellent prediction accuracies for response to both ICIs and delineated spectral markers specific to each therapy, consistent with their differential mechanisms of action. Corroborated by proteomics analysis, our observation of biomolecular changes in the TME should catalyze detailed investigations for translating such markers and label-free Raman spectroscopy for clinical monitoring of immunotherapy response in cancer patients. SIGNIFICANCE: This study provides first-in-class evidence that optical spectroscopy allows sensitive detection of early changes in the biomolecular composition of tumors that predict response to immunotherapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Santosh Kumar Paidi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | | | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Paola Monterroso Diaz
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Jesse D Ivers
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - David E Lee
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Nathan L Avaritt
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Allen J Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Charles M Quick
- Division of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas. .,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland. .,The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|