1
|
Das A, Icardi J, Borovicka J, Holden S, Harrison HF, Hirsch AJ, Raber J, Dana H. Systemic exposure to COVID-19 virus-like particles modulates firing patterns of cortical neurons in the living mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625543. [PMID: 39651180 PMCID: PMC11623590 DOI: 10.1101/2024.11.26.625543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) causes a systemic infection that affects the central nervous system. We used virus-like particles (VLPs) to explore how exposure to the SARS-CoV-2 proteins affects brain activity patterns in wild-type (WT) mice and in mice that express the wild-type human tau protein (htau mice). VLP exposure elicited dose-dependent changes in corticosterone and distinct chemokine levels. Longitudinal two-photon microscopy recordings of primary somatosensory and motor cortex neurons that express the jGCaMP7s calcium sensor tracked modifications of neuronal activity patterns following exposure to VLPs. There was a substantial short-term increase in stimulus-evoked activity metrics in both WT and htau VLP-injected mice, while htau mice showed also increased spontaneous activity metrics and increase activity in the vehicle-injected group. Over the following weeks, activity metrics in WT mice subsided, but remained above baseline levels. For htau mice, activity metrics either remain elevated or decreased to lower levels than baseline. Overall, our data suggest that exposure to the SARS-CoV-2 VLPs leads to strong short-term disruption of cortical activity patterns in mice with long-term residual effects. The htau mice, which have a more vulnerable genetic background, exhibited more severe pathobiology that may lead to more adverse outcomes.
Collapse
|
2
|
Das A, Holden S, Borovicka J, Icardi J, O'Niel A, Chaklai A, Patel D, Patel R, Kaech Petrie S, Raber J, Dana H. Large-scale recording of neuronal activity in freely-moving mice at cellular resolution. Nat Commun 2023; 14:6399. [PMID: 37828016 PMCID: PMC10570384 DOI: 10.1038/s41467-023-42083-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Current methods for recording large-scale neuronal activity from behaving mice at single-cell resolution require either fixing the mouse head under a microscope or attachment of a recording device to the animal's skull. Both of these options significantly affect the animal behavior and hence also the recorded brain activity patterns. Here, we introduce a different method to acquire snapshots of single-cell cortical activity maps from freely-moving mice using a calcium sensor called CaMPARI. CaMPARI has a unique property of irreversibly changing its color from green to red inside active neurons when illuminated with 400 nm light. We capitalize on this property to demonstrate cortex-wide activity recording without any head fixation, tethering, or attachment of a miniaturized device to the mouse's head. Multiple cortical regions were recorded while the mouse was performing a battery of behavioral and cognitive tests. We identified task-dependent activity patterns across motor and somatosensory cortices, with significant differences across sub-regions of the motor cortex and correlations across several activity patterns and task parameters. This CaMPARI-based recording method expands the capabilities of recording neuronal activity from freely-moving and behaving mice under minimally-restrictive experimental conditions and provides large-scale volumetric data that are currently not accessible otherwise.
Collapse
Affiliation(s)
- Aniruddha Das
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Julie Borovicka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jacob Icardi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Abigail O'Niel
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Ariel Chaklai
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Davina Patel
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Rushik Patel
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, USA
| | - Hod Dana
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Kim SJ, Affan RO, Frostig H, Scott BB, Alexander AS. Advances in cellular resolution microscopy for brain imaging in rats. NEUROPHOTONICS 2023; 10:044304. [PMID: 38076724 PMCID: PMC10704261 DOI: 10.1117/1.nph.10.4.044304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/23/2023] [Accepted: 11/07/2023] [Indexed: 02/12/2024]
Abstract
Rats are used in neuroscience research because of their physiological similarities with humans and accessibility as model organisms, trainability, and behavioral repertoire. In particular, rats perform a wide range of sophisticated social, cognitive, motor, and learning behaviors within the contexts of both naturalistic and laboratory environments. Further progress in neuroscience can be facilitated by using advanced imaging methods to measure the complex neural and physiological processes during behavior in rats. However, compared with the mouse, the rat nervous system offers a set of challenges, such as larger brain size, decreased neuron density, and difficulty with head restraint. Here, we review recent advances in in vivo imaging techniques in rats with a special focus on open-source solutions for calcium imaging. Finally, we provide suggestions for both users and developers of in vivo imaging systems for rats.
Collapse
Affiliation(s)
- Su Jin Kim
- Johns Hopkins University, Department of Psychological and Brain Sciences, Baltimore, Maryland, United States
| | - Rifqi O. Affan
- Boston University, Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston, Massachusetts, United States
- Boston University, Graduate Program in Neuroscience, Boston, Massachusetts, United States
| | - Hadas Frostig
- Boston University, Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston, Massachusetts, United States
| | - Benjamin B. Scott
- Boston University, Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center and Photonics Center, Boston, Massachusetts, United States
| | - Andrew S. Alexander
- University of California Santa Barbara, Department of Psychological and Brain Sciences, Santa Barbara, California, United States
| |
Collapse
|
4
|
Chornyy S, Borovicka JA, Patel D, Shin MK, Vázquez-Rosa E, Miller E, Wilson B, Pieper AA, Dana H. Longitudinal in vivo monitoring of axonal degeneration after brain injury. CELL REPORTS METHODS 2023; 3:100481. [PMID: 37323578 PMCID: PMC10261926 DOI: 10.1016/j.crmeth.2023.100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 06/17/2023]
Abstract
Traumatic brain injury (TBI)-induced axonal degeneration leads to acute and chronic neuropsychiatric impairment, neuronal death, and accelerated neurodegenerative diseases of aging, including Alzheimer's and Parkinson's diseases. In laboratory models, axonal degeneration is traditionally studied through comprehensive postmortem histological evaluation of axonal integrity at multiple time points. This requires large numbers of animals to power for statistical significance. Here, we developed a method to longitudinally monitor axonal functional activity before and after injury in vivo in the same animal over an extended period. Specifically, after expressing an axonal-targeting genetically encoded calcium indicator in the mouse dorsolateral geniculate nucleus, we recorded axonal activity patterns in the visual cortex in response to visual stimulation. In vivo aberrant axonal activity patterns after TBI were detectable from 3 days after injury and persisted chronically. This method generates longitudinal same-animal data that substantially reduces the number of required animals for preclinical studies of axonal degeneration.
Collapse
Affiliation(s)
- Sergiy Chornyy
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Julie A. Borovicka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Davina Patel
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Min-Kyoo Shin
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08226, Republic of Korea
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Emiko Miller
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Brigid Wilson
- Department of Infectious Diseases and HIV Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Andrew A. Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Hod Dana
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
5
|
Xiong H, Tang F, Guo Y, Xu R, Lei P. Neural Circuit Changes in Neurological Disorders: Evidence from in vivo Two-photon Imaging. Ageing Res Rev 2023; 87:101933. [PMID: 37061201 DOI: 10.1016/j.arr.2023.101933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Neural circuits, such as synaptic plasticity and neural activity, are critical components of healthy brain function. The consequent dynamic remodeling of neural circuits is an ongoing procedure affecting neuronal activities. Disruption of this essential process results in diseases. Advanced microscopic applications such as two-photon laser scanning microscopy have recently been applied to understand neural circuit changes during disease since it can visualize fine structural and functional cellular activation in living animals. In this review, we have summarized the latest work assessing the dynamic rewiring of postsynaptic dendritic spines and modulation of calcium transients in neurons of the intact living brain, focusing on their potential roles in neurological disorders (e.g. Alzheimer's disease, stroke, and epilepsy). Understanding the fine changes that occurred in the brain during disease is crucial for future clinical intervention developments.
Collapse
Affiliation(s)
- Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China; Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Fei Tang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Yujie Guo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China.
| |
Collapse
|