1
|
Sun Z, Du M, Wu X, Tao R, Sun P, Zheng S, Zhang Z, Zhou D, Zhao X, Yang P. Rapid diagnosis of TERT promoter mutation using Terahertz absorption spectroscopy in glioblastoma. Sci Rep 2025; 15:18480. [PMID: 40425623 PMCID: PMC12117072 DOI: 10.1038/s41598-025-03161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor with poor outcomes and limited treatment options. The telomerase reverse transcriptase (TERT) promoter mutation, one of the key biomarkers in GBM, is linked to tumor progression and prognosis. This study employed terahertz time-domain spectroscopy (THz-TDS) to analyze frozen GBM tissue sections, extracting six spectral features: absorption coefficient, dielectric loss factor, dielectric constant, extinction coefficient, refractive index, and dielectric loss tangent. LASSO regression was employed for feature selection, and then principal component analysis (PCA) was applied to minimize inter-feature correlations. A Random Forest classifier built on these features successfully predicted TERT mutation status, achieving an area under the receiver operating characteristic curve (AUC) of 0.908 in the validation set. Our findings demonstrate that THz spectroscopy, coupled with machine learning, can identify molecular differences associated with TERT mutations, supporting its potential as a rapid, intraoperative diagnostic tool for personalized GBM treatment. This approach could enhance surgical decision-making and optimize patient outcomes through precise, real-time molecular diagnostics.
Collapse
Affiliation(s)
- Zhiyan Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Minghui Du
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xianhao Wu
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Peiyuan Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shaowen Zheng
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zhaohui Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, China
| | - Dabiao Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xiaoyan Zhao
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China.
- Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Pu Z, Wu Y, Zhu Z, Zhao H, Cui D. A new horizon for neuroscience: terahertz biotechnology in brain research. Neural Regen Res 2025; 20:309-325. [PMID: 38819036 PMCID: PMC11317941 DOI: 10.4103/nrr.nrr-d-23-00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/18/2023] [Accepted: 01/03/2024] [Indexed: 06/01/2024] Open
Abstract
Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences. In this article, we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry. Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease, cerebrovascular disease, glioma, psychiatric disease, traumatic brain injury, and myelin deficit. In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases. Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood, the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications. However, the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications. This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
Collapse
Affiliation(s)
- Zhengping Pu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang, Zhejiang Province, China
| | - Yu Wu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, China
| | - Zhongjie Zhu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Hongwei Zhao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, China
| | - Donghong Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Rytik AP, Tuchin VV. Effect of terahertz radiation on cells and cellular structures. FRONTIERS OF OPTOELECTRONICS 2025; 18:2. [PMID: 39871024 PMCID: PMC11772664 DOI: 10.1007/s12200-024-00146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/08/2024] [Indexed: 01/29/2025]
Abstract
The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes. The problem of the safety of terahertz radiation for the human body from the point of view of its effect on the structures and systems of biological cells is also considered.
Collapse
Affiliation(s)
- A P Rytik
- Institute of Physics, Saratov State University, Saratov, 410012, Russia.
| | - V V Tuchin
- Institute of Physics, Saratov State University, Saratov, 410012, Russia.
- Science Medical Center, Saratov State University, Saratov, 410012, Russia.
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, 634050, Russia.
- Institute of Precision Mechanics and Control, Federal Research Center "Saratov Scientific Center of the Russian Academy of Sciences", Saratov, 410012, Russia.
| |
Collapse
|
4
|
Choi DH. Spectral scattering characteristics of subwavelength-sized spherical particles near Mie resonance modes probed by tightly focused Terahertz waves. Sci Rep 2025; 15:1137. [PMID: 39774302 PMCID: PMC11707083 DOI: 10.1038/s41598-025-85259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
The complex dynamics of terahertz (THz) wave scattering by subwavelength-scale structures remain largely unexplored. This article examines the spectral scattering characteristics of subwavelength-sized spherical particles probed by tightly focused THz waves through numerical simulations and experimental techniques. The simulations reveal that the scattering intensity for lower Mie resonance modes (magnetic dipole and electric dipole modes) remains largely unaffected when THz waves are focused down to 0.3 λ, whereas higher Mie resonance modes experience a significant decrease in intensity as the beam size is reduced. Experimentally, scattering effects were observed by imaging two subwavelength-sized dielectric spheres, each with a diameter of 480 μm and refractive indices of 2 and 6, around 0.3 THz, where the magnetic dipole mode of the particle with refractive index of 2 was detected. Experimental results confirm that the image contrast of the spheres is predominantly influenced by scattering effects near the Mie resonance frequency, even with low refractive index materials. This work represents a significant advancement in the detection and characterization of subwavelength-sized structures within the THz region. Furthermore, the findings extend beyond THz frequency ranges and have potential applications in fields such as sensing, imaging, and sizing across optical, infrared, and millimeter wave ranges.
Collapse
Affiliation(s)
- Da-Hye Choi
- Terahertz Research Section, Electronics and Telecommunications Research Institute, Deajeon, 34129, Republic of Korea.
| |
Collapse
|
5
|
Genina EA, Lazareva EN, Surkov YI, Serebryakova IA, Shushunova NA. Optical parameters of healthy and tumor breast tissues in mice. JOURNAL OF BIOPHOTONICS 2024; 17:e202400123. [PMID: 38925916 DOI: 10.1002/jbio.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Knowledge of the optical parameters of tumors is important for choosing the correct laser treatment parameters. In this paper, optical properties and refraction indices of breast tissue in healthy mice and a 4T1 model mimicking human breast cancer have been measured. A significant decrease in both the scattering and refractive index of tumor tissue has been observed. The change in tissue morphology has induced the change in the slope of the scattering spectrum. Thus, the light penetration depth into tumor has increased by almost 1.5-2 times in the near infrared "optical windows." Raman spectra have shown lower lipid content and higher protein content in tumor. The difference in the optical parameters of the tissues under study makes it possible to reliably differentiate them. The results may be useful for modeling the distribution of laser radiation in healthy tissues and cancers for deriving optimal irradiation conditions in photodynamic therapy.
Collapse
Affiliation(s)
- Elina A Genina
- Institute of Physics, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Ekaterina N Lazareva
- Institute of Physics, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Yuri I Surkov
- Institute of Physics, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Laboratory of Biomedical Photoacoustic, Saratov State University, Saratov, Russia
| | - Isabella A Serebryakova
- Institute of Physics, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Natalya A Shushunova
- Laboratory of Biomedical Photoacoustic, Saratov State University, Saratov, Russia
| |
Collapse
|
6
|
Xu K, Arbab MH. Terahertz polarimetric imaging of biological tissue: Monte Carlo modeling of signal contrast mechanisms due to Mie scattering. BIOMEDICAL OPTICS EXPRESS 2024; 15:2328-2342. [PMID: 38633080 PMCID: PMC11019684 DOI: 10.1364/boe.515623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
Many promising biomedical applications have been proposed for terahertz (THz) spectroscopy and diagnostic imaging techniques. Polarimetric imaging systems are generally useful for enhancing imaging contrasts, yet the interplay between THz polarization changes and the random discrete structures in biological samples is not well understood. In this work, we performed Monte Carlo simulations of the propagation of polarized THz waves in skin and adipose tissues based on the Mie scattering from intrinsic structures, such as hair follicles or sweat glands. We show that the polarimetric contrasts are distinctly affected by concentration, size and dielectric properties of the scatterers, as well as the frequency and polarization of the incident THz waves. We describe the experimental requirements for observing and extracting these polarimetric signals due to the low energy and small angular spread of the back-scattered THz radiation. We analyzed the spatially integrated Mueller matrices of samples in the normal-incidence back-scattering geometry. We show that the frequency-dependent degree of polarization (DOP) can be used to infer the concentrations and dielectric contents of the scattering structures. Our modeling approach can be used to inform the design of the imaging modalities and the interpretation of the spectroscopic data in future terahertz biomedical imaging applications.
Collapse
Affiliation(s)
- Kuangyi Xu
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - M. Hassan Arbab
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| |
Collapse
|
7
|
Sentyabreva A, Miroshnichenko E, Artemova D, Alekseeva A, Kosyreva A. Morphological and Molecular Biological Characteristics of Experimental Rat Glioblastoma Tissue Strains Induced by Different Carcinogenic Chemicals. Biomedicines 2024; 12:713. [PMID: 38672069 PMCID: PMC11048177 DOI: 10.3390/biomedicines12040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive human neoplasm with poor prognosis due to its malignancy and therapy resistance. To evaluate the efficacy of antitumor therapy, cell models are used most widely, but they are not as relevant to human GBMs as tissue models of gliomas, closely corresponding to human GBMs in cell heterogeneity. In this work, we compared three different tissue strains of rat GBM 101.8 (induced by DMBA), GBM 11-9-2, and GBM 14-4-5 (induced by ENU). MATERIALS AND METHODS We estimated different gene expressions by qPCR-RT and conducted Western blotting and histological and morphometric analysis of three different tissue strains of rat GBM. RESULTS GBM 101.8 was characterized by the shortest period of tumor growth and the greatest number of necroses and mitoses; overexpression of Abcb1, Sox2, Cdkn2a, Cyclin D, and Trp53; and downregulated expression of Vegfa, Pdgfra, and Pten; as well as a high level of HIF-1α protein content. GBM 11-9-2 and GBM 14-4-5 were relevant to low-grade gliomas and characterized by downregulated Mgmt expression; furthermore, a low content of CD133 protein was found in GBM 11-9-2. CONCLUSIONS GBM 101.8 is a reliable model for further investigation due to its similarity to high-grade human GBMs, while GBM 11-9-2 and GBM 14-4-5 correspond to Grade 2-3 gliomas.
Collapse
Affiliation(s)
- Alexandra Sentyabreva
- Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ekaterina Miroshnichenko
- Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Daria Artemova
- Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anna Alekseeva
- Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
8
|
Xu K, Arbab MH. Terahertz polarimetric imaging of biological tissues: Monte Carlo modeling of signal contrast mechanisms due to Mie scattering. RESEARCH SQUARE 2023:rs.3.rs-3745690. [PMID: 38168438 PMCID: PMC10760297 DOI: 10.21203/rs.3.rs-3745690/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Many promising biomedical applications have been proposed for terahertz (THz) spectroscopy and diagnostic imaging techniques. Polarimetric imaging systems are generally useful for enhancing imaging contrasts, yet the interplay between THz polarization changes and the random discrete structures in biological samples are not well understood. In this work, we performed Monte Carlo simulations of the propagation of polarized THz waves in skin and adipose tissues based on the Mie scattering from intrinsic structures, such as hair follicles or sweat glands. We show that the polarimetric contrasts are distinctly affected by concentration, size and dielectric properties of the scatterers, as well as the frequency and polarization of the incident THz waves. We describe the experimental requirements for observing and extracting these polarimetric signals due to the low energy and small angular spread of the back-scattered THz radiation. We analyzed the spatially integrated Mueller matrices of samples in the normal-incidence back-scattering geometry. We show that the frequency-dependent degree of polarization (DOP) can be used to infer the concentrations and dielectric contents of the scattering structures. Our modeling approach can be used to inform the design of the imaging modalities and the interpretation of the spectroscopic data in future terahertz biomedical imaging applications.
Collapse
Affiliation(s)
- Kuangyi Xu
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - M. Hassan Arbab
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| |
Collapse
|
9
|
Cong M, Li W, Liu Y, Bi J, Wang X, Yang X, Zhang Z, Zhang X, Zhao YN, Zhao R, Qiu J. Biomedical application of terahertz imaging technology: a narrative review. Quant Imaging Med Surg 2023; 13:8768-8786. [PMID: 38106329 PMCID: PMC10722018 DOI: 10.21037/qims-23-526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/31/2023] [Indexed: 12/19/2023]
Abstract
Background and Objective Terahertz (THz) imaging has wide applications in biomedical research due to its properties, such as non-ionizing, non-invasive and distinctive spectral fingerprints. Over the past 6 years, the application of THz imaging in tumor tissue has made encouraging progress. However, due to the strong absorption of THz by water, the large size, high cost, and low sensitivity of THz devices, it is still difficult to be widely used in clinical practice. This paper provides ideas for researchers and promotes the development of THz imaging in clinical research. Methods The literature search was conducted in the Web of Science and PubMed databases using the keywords "Terahertz imaging", "Breast", "Brain", "Skin" and "Cancer". A total of 94 English language articles from 1 January, 2017 to 30 December, 2022 were reviewed. Key Content and Findings In this review, we briefly introduced the recent advances in THz near-field imaging, single-pixel imaging and real-time imaging, the applications of THz imaging for detecting breast, brain and skin tissues in the last 6 years were reviewed, and the advantages and existing challenges were identified. It is necessary to combine machine learning and metamaterials to develop real-time THz devices with small size, low cost and high sensitivity that can be widely used in clinical practice. More powerful THz detectors can be developed by combining graphene, designing structures and other methods to improve the sensitivity of the devices and obtain more accurate information. Establishing a THz database is one of the important methods to improve the repeatability and accuracy of imaging results. Conclusions THz technology is an effective method for tumor imaging. We believe that with the joint efforts of researchers and clinicians, accurate, real-time, and safe THz imaging will be widely applied in clinical practice in the future.
Collapse
Affiliation(s)
- Mengyang Cong
- College of Mechanical and Electronic Engineering, Shandong Agricultural University, Tai’an, China
| | - Wen Li
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Yang Liu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Jing Bi
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Xiaokun Wang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Xueqiao Yang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Zihan Zhang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Xiaoxin Zhang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Ya-Nan Zhao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Rui Zhao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jianfeng Qiu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
- Center for Medical Engineer Technology Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| |
Collapse
|
10
|
Chernomyrdin NV, Il'enkova DR, Zhelnov VA, Alekseeva AI, Gavdush AA, Musina GR, Nikitin PV, Kucheryavenko AS, Dolganova IN, Spektor IE, Tuchin VV, Zaytsev KI. Quantitative polarization-sensitive super-resolution solid immersion microscopy reveals biological tissues' birefringence in the terahertz range. Sci Rep 2023; 13:16596. [PMID: 37789192 PMCID: PMC10547778 DOI: 10.1038/s41598-023-43857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
Terahertz (THz) technology offers a variety of applications in label-free medical diagnosis and therapy, majority of which rely on the effective medium theory that assumes biological tissues to be optically isotropic and homogeneous at the scale posed by the THz wavelengths. Meanwhile, most recent research discovered mesoscale ([Formula: see text]) heterogeneities of tissues; [Formula: see text] is a wavelength. This posed a problem of studying the related scattering and polarization effects of THz-wave-tissue interactions, while there is still a lack of appropriate tools and instruments for such studies. To address this challenge, in this paper, quantitative polarization-sensitive reflection-mode THz solid immersion (SI) microscope is developed, that comprises a silicon hemisphere-based SI lens, metal-wire-grid polarizer and analyzer, a continuous-wave 0.6 THz ([Formula: see text] µm) backward-wave oscillator (BWO), and a Golay detector. It makes possible the study of local polarization-dependent THz response of mesoscale tissue elements with the resolution as high as [Formula: see text]. It is applied to retrieve the refractive index distributions over the freshly-excised rat brain for the two orthogonal linear polarizations of the THz beam, aimed at uncovering the THz birefringence (structural optical anisotropy) of tissues. The most pronounced birefringence is observed for the Corpus callosum, formed by well-oriented and densely-packed axons bridging the cerebral hemispheres. The observed results are verified by the THz pulsed spectroscopy of the porcine brain, which confirms higher refractive index of the Corpus callosum when the THz beam is polarized along axons. Our findings highlight a potential of the quantitative polarization THz microscopy in biophotonics and medical imaging.
Collapse
Affiliation(s)
- N V Chernomyrdin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 119991.
| | - D R Il'enkova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 119991
| | - V A Zhelnov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 119991
| | - A I Alekseeva
- Research Institute of Human Morphology, Moscow, Russia, 117418
| | - A A Gavdush
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 119991
| | - G R Musina
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - P V Nikitin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - A S Kucheryavenko
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - I N Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - I E Spektor
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 119991
| | - V V Tuchin
- Institute of Physics and Science Medical Center, Saratov State University, Saratov, Russia, 410012
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia, 634050
| | - K I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 119991.
| |
Collapse
|
11
|
Wu X, Tao R, Zhang T, Liu X, Wang J, Zhang Z, Zhao X, Yang P. Biomedical applications of terahertz spectra in clinical and molecular pathology of human glioma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121933. [PMID: 36208578 DOI: 10.1016/j.saa.2022.121933] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Gliomas are the most common type of primary tumor originating in the central nervous system of adults. Tumor histological type, pathological grade, and molecular pathology are significant prognosis and predictive factors. In this study, we were aiming to predict histological type and molecular pathological features based on terahertz time-domain spectroscopy technology. Nine gliomas with different grades, one meningioma, and one lymphoma were enrolled. There were significant differences in terahertz absorption coefficient between normal brain tissue, tumoral-periphery, and tumoral-center tissue in specific frequency bands (0.2-1.4 THz). Histological type, pathological grade, and glioma-specific biomarkers were closely related to the terahertz absorption coefficient in both tumoral-periphery and tumoral-center tissues. Interestingly, tumoral-periphery showed more obvious differences than tumoral-center tissues in almost all aspects. All the results show that the terahertz technology has potential application value in the intraoperative real-time glioma recognition and diagnosis of glioma histological and molecular pathological features.
Collapse
Affiliation(s)
- Xianhao Wu
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tianyao Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xing Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Zhang
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoyan Zhao
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Martins IS, Silva HF, Lazareva EN, Chernomyrdin NV, Zaytsev KI, Oliveira LM, Tuchin VV. Measurement of tissue optical properties in a wide spectral range: a review [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:249-298. [PMID: 36698664 PMCID: PMC9841994 DOI: 10.1364/boe.479320] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
A distinctive feature of this review is a critical analysis of methods and results of measurements of the optical properties of tissues in a wide spectral range from deep UV to terahertz waves. Much attention is paid to measurements of the refractive index of biological tissues and liquids, the knowledge of which is necessary for the effective application of many methods of optical imaging and diagnostics. The optical parameters of healthy and pathological tissues are presented, and the reasons for their differences are discussed, which is important for the discrimination of pathologies and the demarcation of their boundaries. When considering the interaction of terahertz radiation with tissues, the concept of an effective medium is discussed, and relaxation models of the effective optical properties of tissues are presented. Attention is drawn to the manifestation of the scattering properties of tissues in the THz range and the problems of measuring the optical properties of tissues in this range are discussed. In conclusion, a method for the dynamic analysis of the optical properties of tissues under optical clearing using an application of immersion agents is presented. The main mechanisms and technologies of optical clearing, as well as examples of the successful application for differentiation of healthy and pathological tissues, are analyzed.
Collapse
Affiliation(s)
- Inês S. Martins
- Center for Innovation in Engineering and Industrial Technology, ISEP, Porto, Portugal
| | - Hugo F. Silva
- Porto University, School of Engineering, Porto, Portugal
| | - Ekaterina N. Lazareva
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | | | - Kirill I. Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Luís M. Oliveira
- Physics Department, Polytechnic of Porto – School of Engineering (ISEP), Porto, Portugal
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
| | - Valery V. Tuchin
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| |
Collapse
|
13
|
Wu L, Wang Y, Liao B, Zhao L, Chen K, Ge M, Li H, Chen T, Feng H, Xu D, Yao J. Temperature dependent terahertz spectroscopy and imaging of orthotopic brain gliomas in mouse models. BIOMEDICAL OPTICS EXPRESS 2022; 13:93-104. [PMID: 35154856 PMCID: PMC8803010 DOI: 10.1364/boe.445597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 05/07/2023]
Abstract
Terahertz (THz) spectroscopy and imaging were used to differentiate brain gliomas in a mouse model at different temperatures. The THz spectral difference between brain glioma and normal brain tissues at -10°C and 20°C was obtained in the 0.4-2.53 THz range. The absorption coefficient and refractive index values varied with both temperature and frequency. The fresh ex vivo brain glioma tissues were mapped by THz attenuated total reflection (ATR) imaging at 2.52 THz in the temperature range from -20°C to 35°C. Compared with histological examination, THz-ATR imaging could better display the tumor areas at a higher temperature. And the averaged reflectivity of normal tissue was increased with the increase of temperature, whereas the tumor region showed a decreasing trend. Thus, the larger THz imaging difference between glioma and normal tissues could be obtained. Moreover, in vivo brain gliomas in mouse models could also be differentiated clearly from normal brain tissues using THz-ATR imaging at 2.52 THz under room temperature. The THz-ATR images corresponded well with those of visual and hematoxylin and eosin (H&E) stained images. Therefore, this pilot study demonstrated that temperature dependence THz spectroscopy and imaging are helpful to the brain gliomas in mouse model detection.
Collapse
Affiliation(s)
- Limin Wu
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yuye Wang
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Bin Liao
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lu Zhao
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kai Chen
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Meilan Ge
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Haibin Li
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Degang Xu
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jianquan Yao
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Cherkasova OP, Serdyukov DS, Nemova EF, Ratushnyak AS, Kucheryavenko AS, Dolganova IN, Xu G, Skorobogatiy M, Reshetov IV, Timashev PS, Spektor IE, Zaytsev KI, Tuchin VV. Cellular effects of terahertz waves. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210179VR. [PMID: 34595886 PMCID: PMC8483303 DOI: 10.1117/1.jbo.26.9.090902] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/08/2021] [Indexed: 05/15/2023]
Abstract
SIGNIFICANCE An increasing interest in the area of biological effects at exposure of tissues and cells to the terahertz (THz) radiation is driven by a rapid progress in THz biophotonics, observed during the past decades. Despite the attractiveness of THz technology for medical diagnosis and therapy, there is still quite limited knowledge about safe limits of THz exposure. Different modes of THz exposure of tissues and cells, including continuous-wave versus pulsed radiation, various powers, and number and duration of exposure cycles, ought to be systematically studied. AIM We provide an overview of recent research results in the area of biological effects at exposure of tissues and cells to THz waves. APPROACH We start with a brief overview of general features of the THz-wave-tissue interactions, as well as modern THz emitters, with an emphasis on those that are reliable for studying the biological effects of THz waves. Then, we consider three levels of biological system organization, at which the exposure effects are considered: (i) solutions of biological molecules; (ii) cultures of cells, individual cells, and cell structures; and (iii) entire organs or organisms; special attention is devoted to the cellular level. We distinguish thermal and nonthermal mechanisms of THz-wave-cell interactions and discuss a problem of adequate estimation of the THz biological effects' specificity. The problem of experimental data reproducibility, caused by rareness of the THz experimental setups and an absence of unitary protocols, is also considered. RESULTS The summarized data demonstrate the current stage of the research activity and knowledge about the THz exposure on living objects. CONCLUSIONS This review helps the biomedical optics community to summarize up-to-date knowledge in the area of cell exposure to THz radiation, and paves the ways for the development of THz safety standards and THz therapeutic applications.
Collapse
Affiliation(s)
- Olga P. Cherkasova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
- Novosibirsk State Technical University, Russian Federation
| | - Danil S. Serdyukov
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
- Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
| | - Eugenia F. Nemova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
| | - Alexander S. Ratushnyak
- Institute of Computational Technologies of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
| | - Anna S. Kucheryavenko
- Institute of Solid State Physics of the Russian Academy of Sciences, Russian Federation
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russian Federation
| | - Irina N. Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Russian Federation
- Sechenov University, Institute for Regenerative Medicine, Russian Federation
- Sechenov University, World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Russian Federation
| | - Guofu Xu
- Polytechnique Montreal, Department of Engineering Physics, Canada
| | | | - Igor V. Reshetov
- Sechenov University, Institute for Cluster Oncology, Russian Federation
- Academy of Postgraduate Education FSCC FMBA, Russian Federation
| | - Peter S. Timashev
- Sechenov University, Institute for Regenerative Medicine, Russian Federation
- Sechenov University, World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Russian Federation
- N.N. Semenov Institute of Chemical Physics, Department of Polymers and Composites, Russian Federation
- Lomonosov Moscow State University, Department of Chemistry, Russian Federation
| | - Igor E. Spektor
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russian Federation
| | - Kirill I. Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russian Federation
- Sechenov University, Institute for Regenerative Medicine, Russian Federation
- Bauman Moscow State Technical University, Russian Federation
| | - Valery V. Tuchin
- Saratov State University, Russian Federation
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Russian Federation
- National Research Tomsk State University, Russian Federation
| |
Collapse
|