1
|
Kochukov YA, Gubina KA, Tereshchenko DP, Smetanin SN, Papashvili AG, Chizhov PA, Ushakov AA, Shukshin VE, Dunaeva EE, Voronina IS, Ivleva LI. Multiwavelength highly transient stimulated Raman scattering on dual Raman modes in Sr(MoO 4) 0.8(WO 4) 0.2 and Sr(MoO 4) 0.4(WO 4) 0.6. OPTICS LETTERS 2024; 49:5575-5578. [PMID: 39353010 DOI: 10.1364/ol.538841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
For the first time to our knowledge, multiwavelength, highly transient, single-pass stimulated Raman scattering with a low wavelength spacing on dual (stretching and bending) Raman modes in Sr(MoO4)0.8(WO4)0.2 and Sr(MoO4)0.4(WO4)0.6 solid solutions in a range of 1000-1300 nm (transparence window of biological tissue) under ultrafast chirped pulse laser pumping is comparatively investigated in the interests of multicolor two-photon imaging of a living tissue. For both the solid solutions, the optimum range (1-5 ps) of chirped pump pulse durations for multiwavelength Raman conversion on dual Raman modes was wider than for SrMoO4 (2-3 ps) due to the higher integral cross section of the bending Raman mode. Higher efficient SRS conversion took place at negative chirping of the pump pulse with its stretching from 0.25 ps up to 5 ps due to the compensation of a positive chirp caused by nonlinear phase modulation with total Raman conversion efficiency of up to 36% for Sr(MoO4)0.8(WO4)0.2 and 49% for Sr(MoO4)0.4(WO4)0.6. The highest number (five) of Stokes components in the desired range (1000-1300 nm) was observed in the optimum Sr(MoO4)0.4(WO4)0.6 solid solution, which has the Raman modes with comparable intensities.
Collapse
|
2
|
Tomar A, Engelmann SA, Woods AL, Dunn AK. Non-degenerate two-photon imaging of deep rodent cortex using indocyanine green in the water absorption window. BIOMEDICAL OPTICS EXPRESS 2024; 15:5053-5066. [PMID: 39296386 PMCID: PMC11407249 DOI: 10.1364/boe.520977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 09/21/2024]
Abstract
We present a novel approach for deep vascular imaging in rodent cortex at excitation wavelengths susceptible to water absorption using two-photon microscopy with photons of dissimilar wavelengths. We demonstrate that non-degenerate two-photon excitation (ND-2PE) enables imaging in the water absorption window from 1400-1550 nm using two excitation sources with temporally overlapped pulses at 1300 nm and 1600 nm that straddle the absorption window. We explore the brightness spectra of indocyanine green (ICG) and assess its suitability for imaging in the water absorption window. Further, we demonstrate in vivo imaging of the rodent cortex vascular structure up to 1.2 mm using ND-2PE. Lastly, a comparative analysis of ND-2PE at 1435 nm and single-wavelength, two-photon imaging at 1300 nm and 1435 nm is presented. Our work extends the excitation range for fluorescent dyes to include water absorption regimes and underscores the feasibility of deep two-photon imaging at these wavelengths.
Collapse
Affiliation(s)
- Alankrit Tomar
- Department of Eletrical and Computer Engineering, The University of Texas at Austin, 2501 Speedway, Austin, TX 78712, USA
| | - Shaun A Engelmann
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Aaron L Woods
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Andrew K Dunn
- Department of Eletrical and Computer Engineering, The University of Texas at Austin, 2501 Speedway, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| |
Collapse
|
3
|
Mihelic SA, Engelmann SA, Sadr M, Jafari CZ, Zhou A, Woods AL, Williamson MR, Jones TA, Dunn AK. Microvascular plasticity in mouse stroke model recovery: Anatomy statistics, dynamics measured by longitudinal in vivo two-photon angiography, network vectorization. J Cereb Blood Flow Metab 2024:271678X241270465. [PMID: 39113424 PMCID: PMC11572002 DOI: 10.1177/0271678x241270465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/19/2024] [Accepted: 06/23/2024] [Indexed: 11/20/2024]
Abstract
This manuscript quantitatively investigates remodeling dynamics of the cortical microvascular network (thousands of connected capillaries) following photothrombotic ischemia (cubic millimeter volume, imaged weekly) using a novel in vivo two-photon angiography and high throughput vascular vectorization method. The results suggest distinct temporal patterns of cerebrovascular plasticity, with acute remodeling peaking at one week post-stroke. The network architecture then gradually stabilizes, returning to a new steady state after four weeks. These findings align with previous literature on neuronal plasticity, highlighting the correlation between neuronal and neurovascular remodeling. Quantitative analysis of neurovascular networks using length- and strand-based statistical measures reveals intricate changes in network anatomy and topology. The distance and strand-length statistics show significant alterations, with a peak of plasticity observed at one week post-stroke, followed by a gradual return to baseline. The orientation statistic plasticity peaks at two weeks, gradually approaching the (conserved across subjects) stroke signature. The underlying mechanism of the vascular response (angiogenesis vs. tissue deformation), however, is yet unexplored. Overall, the combination of chronic two-photon angiography, vascular vectorization, reconstruction/visualization, and statistical analysis enables both qualitative and quantitative assessments of neurovascular remodeling dynamics, demonstrating a method for investigating cortical microvascular network disorders and the therapeutic modes of action thereof.
Collapse
Affiliation(s)
- Samuel A Mihelic
- Biomedical Engineering Department, University of Texas at Austin, Austin, TX, USA
| | - Shaun A Engelmann
- Biomedical Engineering Department, University of Texas at Austin, Austin, TX, USA
| | - Mahdi Sadr
- Biomedical Engineering Department, University of Texas at Austin, Austin, TX, USA
| | - Chakameh Z Jafari
- Biomedical Engineering Department, University of Texas at Austin, Austin, TX, USA
| | - Annie Zhou
- Biomedical Engineering Department, University of Texas at Austin, Austin, TX, USA
| | - Aaron L Woods
- Biomedical Engineering Department, University of Texas at Austin, Austin, TX, USA
| | | | - Theresa A Jones
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Andrew K Dunn
- Biomedical Engineering Department, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Zhou A, Mihelic SA, Engelmann SA, Tomar A, Dunn AK, Narasimhan VM. A Deep Learning Approach for Improving Two-Photon Vascular Imaging Speeds. Bioengineering (Basel) 2024; 11:111. [PMID: 38391597 PMCID: PMC10886311 DOI: 10.3390/bioengineering11020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/24/2024] Open
Abstract
A potential method for tracking neurovascular disease progression over time in preclinical models is multiphoton fluorescence microscopy (MPM), which can image cerebral vasculature with capillary-level resolution. However, obtaining high-quality, three-dimensional images with traditional point scanning MPM is time-consuming and limits sample sizes for chronic studies. Here, we present a convolutional neural network-based (PSSR Res-U-Net architecture) algorithm for fast upscaling of low-resolution or sparsely sampled images and combine it with a segmentation-less vectorization process for 3D reconstruction and statistical analysis of vascular network structure. In doing so, we also demonstrate that the use of semi-synthetic training data can replace the expensive and arduous process of acquiring low- and high-resolution training pairs without compromising vectorization outcomes, and thus open the possibility of utilizing such approaches for other MPM tasks where collecting training data is challenging. We applied our approach to images with large fields of view from a mouse model and show that our method generalizes across imaging depths, disease states and other differences in neurovasculature. Our pretrained models and lightweight architecture can be used to reduce MPM imaging time by up to fourfold without any changes in underlying hardware, thereby enabling deployability across a range of settings.
Collapse
Affiliation(s)
- Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Samuel A Mihelic
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Shaun A Engelmann
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Alankrit Tomar
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Vagheesh M Narasimhan
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway C0930, Austin, TX 78712, USA
- Department of Statistics and Data Sciences, The University of Texas at Austin, 105 E. 24th St D9800, Austin, TX 78712, USA
| |
Collapse
|
5
|
Tomar A, Engelmann SA, Woods AL, Dunn AK. Non-Degenerate Two-Photon Imaging of Deep Rodent Cortex using Indocyanine Green in the water absorption window. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.13.575485. [PMID: 38293101 PMCID: PMC10827096 DOI: 10.1101/2024.01.13.575485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We present a novel approach for deep vascular imaging in rodent cortex at excitation wavelengths susceptible to water absorption using two-photon microscopy with photons of dissimilar wavelengths. We demonstrate that non-degenerate two-photon excitation (ND-2PE) enables imaging in the water absorption window from 1400-1550 nm using two synchronized excitation sources at 1300 nm and 1600 nm that straddle the absorption window. We explore the brightness spectra of indocyanine green (ICG) and assess its suitability for imaging in the water absorption window. Further, we demonstrate in vivo imaging of the rodent cortex vascular structure up to 1.2 mm using ND-2PE. Lastly, a comparative analysis of ND-2PE at 1435 nm and single-wavelength, two-photon imaging at 1300 nm and 1435 nm is presented. Our work extends the excitation range for fluorescent dyes to include water absorption regimes and underscores the feasibility of deep two-photon imaging at these wavelengths.
Collapse
Affiliation(s)
- Alankrit Tomar
- Department of Eletrical and Computer Engineering, The University of Texas at Austin, 2501 Speedway, Austin, TX 78712, USA
| | - Shaun A. Engelmann
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Aaron L. Woods
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Andrew K. Dunn
- Department of Eletrical and Computer Engineering, The University of Texas at Austin, 2501 Speedway, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| |
Collapse
|
6
|
Zhang Y, Xu J, Liang J, Ye J, Li S, Ma X, Pan Z, Leng J, Zhou P. High power tunable Raman fiber laser at 1.2 μm waveband. FRONTIERS OF OPTOELECTRONICS 2024; 17:1. [PMID: 38224409 PMCID: PMC10789707 DOI: 10.1007/s12200-024-00105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/24/2023] [Indexed: 01/16/2024]
Abstract
Development of a high power fiber laser at special waveband, which is difficult to achieve by conventional rare-earth-doped fibers, is a significant challenge. One of the most common methods for achieving lasing at special wavelength is Raman conversion. Phosphorus-doped fiber (PDF), due to the phosphorus-related large frequency shift Raman peak at 40 THz, is a great choice for large frequency shift Raman conversion. Here, by adopting 150 m large mode area triple-clad PDF as Raman gain medium, and a novel wavelength-selective feedback mechanism to suppress the silica-related Raman emission, we build a high power cladding-pumped Raman fiber laser at 1.2 μm waveband. A Raman signal with power up to 735.8 W at 1252.7 nm is obtained. To the best of our knowledge, this is the highest output power ever reported for fiber lasers at 1.2 μm waveband. Moreover, by tuning the wavelength of the pump source, a tunable Raman output of more than 450 W over a wavelength range of 1240.6-1252.7 nm is demonstrated. This work proves PDF's advantage in high power large frequency shift Raman conversion with a cladding pump scheme, thus providing a good solution for a high power laser source at special waveband.
Collapse
Affiliation(s)
- Yang Zhang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
| | - Jiangming Xu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China.
| | - Junrui Liang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
| | - Jun Ye
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073, China
| | - Sicheng Li
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
| | - Xiaoya Ma
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
| | - Zhiyong Pan
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073, China
| | - Jinyong Leng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, 410073, China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073, China
| | - Pu Zhou
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China.
| |
Collapse
|
7
|
Engelmann SA, Tomar A, Woods AL, Dunn AK. Pulse train gating to improve signal generation for in vivo two-photon fluorescence microscopy. NEUROPHOTONICS 2023; 10:045006. [PMID: 37937198 PMCID: PMC10627479 DOI: 10.1117/1.nph.10.4.045006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Significance Two-photon microscopy is used routinely for in vivo imaging of neural and vascular structures and functions in rodents with a high resolution. Image quality, however, often degrades in deeper portions of the cerebral cortex. Strategies to improve deep imaging are therefore needed. We introduce such a strategy using the gating of high repetition rate ultrafast pulse trains to increase the signal level. Aim We investigate how the signal generation, signal-to-noise ratio (SNR), and signal-to-background ratio (SBR) improve with pulse gating while imaging in vivo mouse cerebral vasculature. Approach An electro-optic modulator with a high-power (6 W) 80 MHz repetition rate ytterbium fiber amplifier is used to create gates of pulses at a 1 MHz repetition rate. We first measure signal generation from a Texas Red solution in a cuvette to characterize the system with no gating and at a 50%, 25%, and 12.5% duty cycle. We then compare the signal generation, SNR, and SBR when imaging Texas Red-labeled vasculature using these conditions. Results We find up to a 6.73-fold increase in fluorescent signal from a cuvette when using a 12.5% duty cycle pulse gating excitation pattern as opposed to a constant 80 MHz pulse train at the same average power. We verify similar increases for in vivo imaging to that observed in cuvette testing. For deep imaging, we find that pulse gating results in a 2.95-fold increase in the SNR and a 1.37-fold increase in the SBR on average when imaging mouse cortical vasculature at depths ranging from 950 to 1050 μ m . Conclusions We demonstrate that a pulse gating strategy can either be used to limit heating when imaging superficial brain regions or used to increase signal generation in deep regions. These findings should encourage others to adopt similar pulse gating excitation schemes for imaging neural structures through two-photon microscopy.
Collapse
Affiliation(s)
- Shaun A Engelmann
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Alankrit Tomar
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Aaron L Woods
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Andrew K Dunn
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| |
Collapse
|
8
|
Papashvili AG, Kochukov YA, Tereshchenko DP, Smetanin SN, Kharitonova PD, Shukshin VE, Dunaeva EE, Voronina IS, Ivleva LI. Highly transient stimulated Raman scattering in SrMoO 4 under ultrafast laser pumping with a controllable chirp. OPTICS LETTERS 2023; 48:4528-4531. [PMID: 37656545 DOI: 10.1364/ol.499428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
For the first time, to the best of our knowledge, we demonstrate highly transient, multiwavelength, single-pass Raman generation with combined frequency shifts on two Raman modes of an SrMoO4 crystal with high total Raman conversion efficiency of up to 48% in conditions of competition with self-phase modulation (SPM). A 58-mm-long SrMoO4 crystal was used as the active medium under pumping by the 1030-nm, 40-µJ laser pulses with controllable dispersive stretching in a range of 0.25-6 ps at negative and positive chirping. The pump pulse chirping was optimized for both high- and low-frequency Raman shifts on the primary (888 cm-1) and secondary (327 cm-1) Raman modes of the crystal. At the optimal conditions, four Stokes components of stimulated Raman scattering (SRS) radiation with high- and low-frequency Raman shifts at the wavelengths of 1066, 1134, 1177, and 1261 nm were efficiently generated.
Collapse
|
9
|
Engelmann SA, Tomar A, Woods AL, Dunn AK. Pulse train gating to improve signal generation for in vivo two-photon fluorescence microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535393. [PMID: 37066310 PMCID: PMC10103994 DOI: 10.1101/2023.04.03.535393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Significance Two-photon microscopy is used routinely for in vivo imaging of neural and vascular structure and function in rodents with a high resolution. Image quality, however, often degrades in deeper portions of the cerebral cortex. Strategies to improve deep imaging are therefore needed. We introduce such a strategy using gates of high repetition rate ultrafast pulse trains to increase signal level. Aim We investigate how signal generation, signal-to-noise ratio (SNR), and signal-to-background ratio (SBR) improve with pulse gating while imaging in vivo mouse cerebral vasculature. Approach An electro-optic modulator is used with a high-power (6 W) 80 MHz repetition rate ytterbium fiber amplifier to create gates of pulses at a 1 MHz repetition rate. We first measure signal generation from a Texas Red solution in a cuvette to characterize the system with no gating and at a 50%, 25%, and 12.5% duty cycle. We then compare signal generation, SNR, and SBR when imaging Texas Red-labeled vasculature using these conditions. Results We find up to a 6.73-fold increase in fluorescent signal from a cuvette when using a 12.5% duty cycle pulse gating excitation pattern as opposed to a constant 80 MHz pulse train. We verify similar increases for in vivo imaging to that observed in cuvette testing. For deep imaging we find pulse gating to result in a 2.95-fold increase in SNR and a 1.37-fold increase in SBR on average when imaging mouse cortical vasculature at depths ranging from 950 μm to 1050 μm. Conclusions We demonstrate that a pulse gating strategy can either be used to limit heating when imaging superficial brain regions or used to increase signal generation in deep regions. These findings should encourage others to adopt similar pulse gating excitation schemes for imaging neural structure through two-photon microscopy.
Collapse
Affiliation(s)
- Shaun A. Engelmann
- University of Texas at Austin, Department of Biomedical Engineering, Austin Texas, United States
| | - Alankrit Tomar
- University of Texas at Austin, Department of Biomedical Engineering, Austin Texas, United States
| | - Aaron L. Woods
- University of Texas at Austin, Department of Biomedical Engineering, Austin Texas, United States
| | - Andrew K. Dunn
- University of Texas at Austin, Department of Biomedical Engineering, Austin Texas, United States
| |
Collapse
|