1
|
Zhu Y, Zhu L, Lim Y, Makita S, Guo Y, Yasuno Y. Multiple scattering suppression for in vivo optical coherence tomography measurement using the B-scan-wise multi-focus averaging method. BIOMEDICAL OPTICS EXPRESS 2024; 15:4044-4064. [PMID: 39022550 PMCID: PMC11249682 DOI: 10.1364/boe.524894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
We demonstrate a method that reduces the noise caused by multi-scattering (MS) photons in an in vivo optical coherence tomography image. This method combines a specially designed image acquisition (i.e., optical coherence tomography scan) scheme and subsequent complex signal processing. For the acquisition, multiple cross-sectional images (frames) are sequentially acquired while the depth position of the focus is altered for each frame by an electrically tunable lens. In the signal processing, the frames are numerically defocus-corrected, and complex averaged. Because of the inconsistency in the MS-photon trajectories among the different electrically tunable lens-induced defocus, this averaging reduces the MS signal. Unlike the previously demonstrated volume-wise multi-focus averaging method, our approach requires the sample to remain stable for only a brief period, approximately 70 ms, thus making it compatible with in vivo imaging. This method was validated using a scattering phantom and in vivo unanesthetized small fish samples, and was found to reduce MS noise even for unanesthetized in vivo measurement.
Collapse
Affiliation(s)
- Yiqiang Zhu
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| | - Lida Zhu
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| | - Yiheng Lim
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| | - Yu Guo
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Tang P, Wang RK, Chao Q. Digital calibration method to enable depth-resolved all-fiber polarization sensitive optical coherence tomography with an arbitrary input polarization state. BIOMEDICAL OPTICS EXPRESS 2024; 15:3329-3343. [PMID: 38855689 PMCID: PMC11161387 DOI: 10.1364/boe.517826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024]
Abstract
We present a fully integrated depth-resolved all fiber-based polarization sensitive optical coherence tomography (PSOCT). In contrast to conventional fiber-based PSOCT systems, which require additional modules to generate two or more input polarization states, or a pre-adjustment procedure to generate a circularly polarized light, the proposed all-fiber PSOCT system can provide depth-resolved birefringent imaging using an arbitrary single input polarization state. Utilizing the discrete differential geometry (DDG)-based polarization state tracing (PST) method, combined with several geometric rotations and transformations in the Stokes space, two problems induced by the optical fibers can be mitigated: 1) The change in the polarization state introduced by the optical fibers can be effectively compensated using a calibration target at the distal end of the probe, and the computations of the local axis orientation and local phase retardation can be achieved with a single arbitrary input polarization state, eliminating the need for a pre-defined input polarization state, allowing a flexible system design and user-friendly experimental procedure; 2) The polarization mode dispersion (PMD) induced by the optical fibers can be compensated digitally without the requirement of additional input polarization states, providing an accurate PSOCT imaging result. To demonstrate the performance of the proposed method, the depth resolved PSOCT results of a plastic phantom and in vivo skin imaging are obtained using the proposed all-fiber PSOCT system.
Collapse
Affiliation(s)
- Peijun Tang
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195,
USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195,
USA
- Department of Ophthalmology,
University of Washington, 750 Republican
St., Seattle, Washington 98195, USA
| | - Qing Chao
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195,
USA
| |
Collapse
|
3
|
Zhu L, Makita S, Tamaoki J, Zhu Y, Mukherjee P, Lim Y, Kobayashi M, Yasuno Y. Polarization-artifact reduction and accuracy improvement of Jones-matrix polarization-sensitive optical coherence tomography by multi-focus-averaging based multiple scattering reduction. BIOMEDICAL OPTICS EXPRESS 2024; 15:256-276. [PMID: 38223182 PMCID: PMC10783893 DOI: 10.1364/boe.509763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Polarization-sensitive optical coherence tomography (PS-OCT) is a promising biomedical imaging tool for the differentiation of various tissue properties. However, the presence of multiple-scattering (MS) signals can degrade the quantitative polarization measurement accuracy. We demonstrate a method to reduce MS signals and increase the measurement accuracy of Jones matrix PS-OCT. This method suppresses MS signals by averaging multiple Jones matrix volumes measured using different focal positions. The MS signals are decorrelated among the volumes by focus position modulation and are thus reduced by averaging. However, the single scattering signals are kept consistent among the focus-modulated volumes by computational refocusing. We validated the proposed method using a scattering phantom and a postmortem medaka fish. The results showed reduced artifacts in birefringence and degree-of-polarization uniformity measurements, particularly in deeper regions in the samples. This method offers a practical solution to mitigate MS-induced artifacts in PS-OCT imaging and improves quantitative polarization measurement accuracy.
Collapse
Affiliation(s)
- Lida Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Junya Tamaoki
- Department of Molecular and Developmental
Biology, Institute of Medicine, University of
Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yiqiang Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yiheng Lim
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental
Biology, Institute of Medicine, University of
Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Ruiz-Lopera S, Restrepo R, Cannon TM, Villiger M, Bouma BE, Uribe-Patarroyo N. Computational refocusing in phase-unstable polarization-sensitive optical coherence tomography. OPTICS LETTERS 2023; 48:4765-4768. [PMID: 37707897 PMCID: PMC10871002 DOI: 10.1364/ol.499051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
We present computational refocusing in polarization-sensitive optical coherence tomography (PS-OCT) to improve spatial resolution in the calculated polarimetric parameters and extend the depth-of-field in phase-unstable, fiber-based PS-OCT systems. To achieve this, we successfully adapted short A-line range phase-stability adaptive optics (SHARP), a computational aberration correction technique compatible with phase-unstable systems, into a Stokes-based PS-OCT system with inter-A-line polarization modulation. Together with the spectral binning technique to mitigate system-induced chromatic polarization effects, we show that computational refocusing improves image quality in tissue polarimetry of swine eye anterior segment ex vivo with PS-OCT. The benefits, drawbacks, and potential applications of computational refocusing in anterior segment imaging are discussed.
Collapse
Affiliation(s)
- Sebastián Ruiz-Lopera
- Applied Optics Group, Universidad EAFIT, Carrera 49 # 7 Sur-50, Medellín, Colombia
- MIT Graduate Program in Electrical Engineering and Computer Science, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - René Restrepo
- Applied Optics Group, Universidad EAFIT, Carrera 49 # 7 Sur-50, Medellín, Colombia
| | - Taylor M. Cannon
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 77 Massachusetts Avenue, Massachusetts 02139, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Brett E. Bouma
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 77 Massachusetts Avenue, Massachusetts 02139, USA
| | - Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
5
|
Zhu L, Makita S, Tamaoki J, Lichtenegger A, Lim Y, Zhu Y, Kobayashi M, Yasuno Y. Multi-focus averaging for multiple scattering suppression in optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:4828-4844. [PMID: 37791259 PMCID: PMC10545188 DOI: 10.1364/boe.493706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 10/05/2023]
Abstract
Multiple scattering is one of the main factors that limits the penetration depth of optical coherence tomography (OCT) in scattering samples. We propose a method termed multi-focus averaging (MFA) to suppress the multiple-scattering signals and improve the image contrast of OCT in deep regions. The MFA method captures multiple OCT volumes with various focal positions and averages them in complex form after correcting the varying defocus through computational refocusing. Because the multiple-scattering takes different trajectories among the different focal position configurations, this averaging suppresses the multiple-scattering signal. Meanwhile, the single-scattering takes a consistent trajectory regardless of the focal position configuration and is not suppressed. Hence, the MFA method improves the ratio between the single-scattering signal and multiple-scattering signal, resulting in an enhancement in the image contrast. A scattering phantom and a postmortem zebrafish were measured to validate the proposed method. The results showed that the contrast of intensity images of both the phantom and zebrafish were improved using the MFA method, such that they were better than the contrast provided by the standard single focus averaging method. The MFA method provides a cost-effective solution for contrast enhancement through multiple-scattering reduction in tissue imaging using OCT systems.
Collapse
Affiliation(s)
- Lida Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Junya Tamaoki
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Japan
| | - Antonia Lichtenegger
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Yiheng Lim
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yiqiang Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Zhu Y, Zhou Y, Guo Z. Fractal-based aberration-corrected full-field OCT. BIOMEDICAL OPTICS EXPRESS 2023; 14:3775-3797. [PMID: 37497484 PMCID: PMC10368032 DOI: 10.1364/boe.485090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
The Kolmogorov turbulence model has been validated as a quantitative 3D light scattering model of the inhomogeneous refraction index of biological tissue using full-field OCT (FF-OCT). A fractal-based computational compensation approach was proposed for correcting of depth-resolved aberrations with volumetric FF-OCT. First, the power-spectral density spectrum of the index inhomogeneities was measured by radial Fourier transformation of volumetric data. The spectrum's shape indicates the spatial correlation function and can be quantified as the fractal dimension of tissue. The defocusing correction matrix was built by applying fractal-based analysis as an image quality metric. For comparison, tissue-induced in-depth aberration models were built by phase compensation. After digital aberration correction of FF-OCT images, it enables extracting the temporal contrast indicating the sample dynamics in onion in mitosis and ex vivo mouse heart during delayed neuronal death. The proposed fractal-based contrast augmented images show subcellular resolution recording of dynamic scatters of the growing-up onion cell wall and some micro activities. In addition, low-frequency chamber and high-frequency cardiac muscle fibers from ex vivo mouse heart tissue. Therefore, the depth-resolved changes in fractal parameters may be regarded as a quantitative indicator of defocus aberration compensation. Also the enhanced temporal contrast in FF-OCT has the potential to be a label-free, non-invasive, and three-dimensional imaging tool to investigate sub-cellular activities in metabolism studies.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Optical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Yuan Zhou
- Department of Vascular Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Zhenyan Guo
- Department of Optical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| |
Collapse
|
7
|
Tomita K, Makita S, Fukutake N, Morishita R, Abd El-Sadek I, Mukherjee P, Lichtenegger A, Tamaoki J, Bian L, Kobayashi M, Mori T, Matsusaka S, Yasuno Y. Theoretical model for en face optical coherence tomography imaging and its application to volumetric differential contrast imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:3100-3124. [PMID: 37497522 PMCID: PMC10368023 DOI: 10.1364/boe.491510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 07/28/2023]
Abstract
A new formulation of the lateral imaging process of point-scanning optical coherence tomography (OCT) and a new differential contrast method designed by using this formulation are presented. The formulation is based on a mathematical sample model called the dispersed scatterer model (DSM), in which the sample is represented as a material with a spatially slowly varying refractive index and randomly distributed scatterers embedded in the material. It is shown that the formulation represents a meaningful OCT image and speckle as two independent mathematical quantities. The new differential contrast method is based on complex signal processing of OCT images, and the physical and numerical imaging processes of this method are jointly formulated using the same theoretical strategy as in the case of OCT. The formula shows that the method provides a spatially differential image of the sample structure. This differential imaging method is validated by measuring in vivo and in vitro samples.
Collapse
Affiliation(s)
- Kiriko Tomita
- Computational Optics Group, University of Tsukuba, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Japan
| | | | - Rion Morishita
- Computational Optics Group, University of Tsukuba, Japan
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Japan
- Department of Physics, Faculty of Science, Damietta University, Damietta, Egypt
| | | | - Antonia Lichtenegger
- Computational Optics Group, University of Tsukuba, Japan
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Junya Tamaoki
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Japan
| | - Lixuan Bian
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Japan
| | - Tomoko Mori
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Japan
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Japan
| | | |
Collapse
|
8
|
Lichtenegger A, Baumann B, Yasuno Y. Optical Coherence Tomography Is a Promising Tool for Zebrafish-Based Research-A Review. Bioengineering (Basel) 2022; 10:5. [PMID: 36671577 PMCID: PMC9854701 DOI: 10.3390/bioengineering10010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The zebrafish is an established vertebrae model in the field of biomedical research. With its small size, rapid maturation time and semi-transparency at early development stages, it has proven to be an important animal model, especially for high-throughput studies. Three-dimensional, high-resolution, non-destructive and label-free imaging techniques are perfectly suited to investigate these animals over various development stages. Optical coherence tomography (OCT) is an interferometric-based optical imaging technique that has revolutionized the diagnostic possibilities in the field of ophthalmology and has proven to be a powerful tool for many microscopic applications. Recently, OCT found its way into state-of-the-art zebrafish-based research. This review article gives an overview and a discussion of the relevant literature and an outlook for this emerging field.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
- Computational Optics Group, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba 305-8573, Japan
| |
Collapse
|
9
|
Zhu L, Makita S, Oida D, Miyazawa A, Oikawa K, Mukherjee P, Lichtenegger A, Distel M, Yasuno Y. Erratum: Computational refocusing of Jones matrix polarization-sensitive optical coherence tomography and investigation of defocus-induced polarization artifacts: publisher's note. BIOMEDICAL OPTICS EXPRESS 2022; 13:3520. [PMID: 35781977 PMCID: PMC9208586 DOI: 10.1364/boe.464290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/15/2023]
Abstract
[This corrects the article on p. 2975 in vol. 13.].
Collapse
Affiliation(s)
- Lida Zhu
- Computational Optics Group,
University of Tsukuba, Tsukuba, Ibaraki,
Japan
| | - Shuichi Makita
- Computational Optics Group,
University of Tsukuba, Tsukuba, Ibaraki,
Japan
| | - Daisuke Oida
- Computational Optics Group,
University of Tsukuba, Tsukuba, Ibaraki,
Japan
| | - Arata Miyazawa
- Computational Optics Group,
University of Tsukuba, Tsukuba, Ibaraki,
Japan
| | - Kensuke Oikawa
- Computational Optics Group,
University of Tsukuba, Tsukuba, Ibaraki,
Japan
- Sky Technology
Inc., Tsukuba, Ibaraki, Japan
| | - Pradipta Mukherjee
- Computational Optics Group,
University of Tsukuba, Tsukuba, Ibaraki,
Japan
| | | | - Martin Distel
- Computational Optics Group,
University of Tsukuba, Tsukuba, Ibaraki,
Japan
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna,
Vienna, Austria
| | - Yoshiaki Yasuno
- Innovative Cancer Models, St.
Anna Children’s Cancer Research Institute,
Vienna, Austria
| |
Collapse
|