1
|
Witten JL, Lukyanova V, Harmening WM. Sub-cone visual resolution by active, adaptive sampling in the human foveola. eLife 2024; 13:RP98648. [PMID: 39468921 PMCID: PMC11521370 DOI: 10.7554/elife.98648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
The foveated architecture of the human retina and the eye's mobility enables prime spatial vision, yet the interplay between photoreceptor cell topography and the constant motion of the eye during fixation remains unexplored. With in vivo foveal cone-resolved imaging and simultaneous microscopic photo stimulation, we examined visual acuity in both eyes of 16 participants while precisely recording the stimulus path on the retina. We find that resolution thresholds were correlated with the individual retina's sampling capacity, and exceeded what static sampling limits would predict by 18%, on average. The length and direction of fixational drift motion, previously thought to be primarily random, played a key role in achieving this sub-cone diameter resolution. The oculomotor system finely adjusts drift behavior towards retinal areas with higher cone densities within only a few hundred milliseconds to enhance retinal sampling.
Collapse
Affiliation(s)
- Jenny L Witten
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität BonnBonnGermany
| | - Veronika Lukyanova
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität BonnBonnGermany
| | - Wolf M Harmening
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität BonnBonnGermany
| |
Collapse
|
2
|
Adhan I, Warr E, Grieshop J, Kreis J, Nikezic D, Walesa A, Hemsworth K, Cooper RF, Carroll J. Intervisit Reproducibility of Foveal Cone Density Metrics. Transl Vis Sci Technol 2024; 13:18. [PMID: 38913007 PMCID: PMC11205225 DOI: 10.1167/tvst.13.6.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose To assess longitudinal reproducibility of metrics of foveal density (peak cone density [PCD], cone density centroid [CDC], and 80th percentile centroid area) in participants with normal vision. Methods Participants (n = 19; five male and 14 female) were imaged at two time points (average interval of 3.2 years) using an adaptive optics scanning light ophthalmoscope (AOSLO). Foveally centered regions of interest (ROIs) were extracted from AOSLO montages. Cone coordinate matrices were semiautomatically derived for each ROI, and cone mosaic metrics were calculated. Results On average, there were no significant changes in cone mosaic metrics between visits. The average ± SD PCD was 187,000 ± 20,000 cones/mm2 and 189,000 ± 21,700 cones/mm2 for visits 1 and 2, respectively (P = 0.52). The average ± SD density at the CDC was 183,000 ± 19,000 cones/mm2 and 184,000 ± 20,800 cones/mm2 for visits 1 and 2, respectively (P = 0.78). The average ± SD 80th percentile isodensity contour area was 15,400 ± 1800 µm2 and 15,600 ± 1910 µm2 for visits 1 and 2, respectively (P = 0.57). Conclusions Foveal cone mosaic density metrics were highly reproducible in the cohort examined here, although further study is required in more diverse populations. Translational Relevance Determination of the normative longitudinal changes in foveal cone topography is key for evaluating longitudinal measures of foveal cone topography in patients with progressive retinal dystrophies.
Collapse
Affiliation(s)
- Iniya Adhan
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emma Warr
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jenna Grieshop
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Kreis
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Danica Nikezic
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashleigh Walesa
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Katherine Hemsworth
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert F. Cooper
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
3
|
Warr E, Grieshop J, Cooper RF, Carroll J. The effect of sampling window size on topographical maps of foveal cone density. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1348950. [PMID: 38984138 PMCID: PMC11182112 DOI: 10.3389/fopht.2024.1348950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/13/2024] [Indexed: 07/11/2024]
Abstract
Purpose To characterize the effect of sampling window size on maps of foveal cone density derived from adaptive optics scanning light ophthalmoscope (AOSLO) images of the cone mosaic. Methods Forty-four AOSLO-derived montages of the foveal cone mosaic (300 x 300µm) were used for this study (from 44 individuals with normal vision). Cone photoreceptor coordinates were semi-automatically identified by one experienced grader. From these coordinates, cone density matrices across each foveal montage were derived using 10 different sampling window sizes containing 5, 10, 15, 20, 40, 60, 80, 100, 150, or 200 cones. For all 440 density matrices, we extracted the location and value of peak cone density (PCD), the cone density centroid (CDC) location, and cone density at the CDC. Results Across all window sizes, PCD values were larger than those extracted at the CDC location, though the difference between these density values decreased as the sampling window size increased (p<0.0001). Overall, both PCD (r=-0.8099, p=0.0045) and density at the CDC (r=-0.7596, p=0.0108) decreased with increasing sampling window size. This reduction was more pronounced for PCD, with a 27.8% lower PCD value on average when using the 200-cone versus the 5-cone window (compared to only a 3.5% reduction for density at the CDC between these same window sizes). While the PCD and CDC locations did not occur at the same location within a given montage, there was no significant relationship between this PCD-CDC offset and sampling window size (p=0.8919). The CDC location was less variable across sampling windows, with an average per-participant 95% confidence ellipse area across the 10 window sizes of 47.56µm² (compared to 844.10µm² for the PCD location, p<0.0001). Conclusion CDC metrics appear more stable across varying sampling window sizes than PCD metrics. Understanding how density values change according to the method used to sample the cone mosaic may facilitate comparing cone density data across different studies.
Collapse
Affiliation(s)
- Emma Warr
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jenna Grieshop
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert F Cooper
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Wynne N, Jiang YY, Aleman TS, Morgan JIW. FOVEAL PHENOTYPES IN CHOROIDEREMIA ON ADAPTIVE OPTICS SCANNING LIGHT OPHTHALMOSCOPY. Retina 2024; 44:659-668. [PMID: 38531059 PMCID: PMC10972540 DOI: 10.1097/iae.0000000000003995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
PURPOSE Choroideremia is an X-linked inherited retinal degeneration involving the choriocapillaris, retinal pigment epithelium, and photoreceptors. Adaptive optics scanning light ophthalmoscopy allows visualization of retinal structure at the level of individual cells and is well poised to provide insight into the pathophysiologic mechanisms underpinning the retinal degeneration in choroideremia. METHODS Foveal adaptive optics scanning light ophthalmoscopy images of 102 eyes of 54 individuals with choroideremia were analyzed. Measures were compared with those from standard clinical imaging. Visual acuity was also measured and compared with quantitative foveal metrics. RESULTS The 3 distinct phenotypes observed were: relatively normal (5 eyes, 4 individuals), spiderweb (9 eyes, 7 individuals), and salt and pepper (87 eyes, 47 individuals). Peak cone density (86 eyes of 51 individuals) was significantly lower in choroideremia than in healthy retinas (P < 0.0001, range: 29,382-157,717 cones/mm2). Peak cone density was significantly related to extent of retained ellipsoid zone on en face optical coherence tomography (r2 = 0.47, P = 0.0009) and inversely related to visual acuity (r2 = 0.20, P = 0.001). CONCLUSION Distinct phenotypes can be observed on adaptive optics scanning light ophthalmoscopy imaging in choroideremia that cannot always be discerned on standard clinical imaging. Quantitative measures on adaptive optics imaging are related to the structural and functional severity of disease.
Collapse
Affiliation(s)
- Niamh Wynne
- Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Yu You Jiang
- Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Tomas S Aleman
- Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Jessica IW Morgan
- Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Heitkotter H, Allphin MT, Untaroiu A, Min H, Warr E, Wynne N, Cooper RF, Carroll J. Peak Cone Density Predicted from Outer Segment Length Measured on Optical Coherence Tomography. Curr Eye Res 2024; 49:314-324. [PMID: 38146597 PMCID: PMC10922793 DOI: 10.1080/02713683.2023.2289853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/11/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023]
Abstract
PURPOSE To compare peak cone density predicted from outer segment length measured on optical coherence tomography with direct measures of peak cone density from adaptive optics scanning light ophthalmoscopy. METHODS Data from 42 healthy participants with direct peak cone density measures and optical coherence tomography line scans available were used in this study. Longitudinal reflectivity profiles were analyzed using two methods of identifying the boundaries of the ellipsoid and interdigitation zones to estimate maximum outer segment length: peak-to-peak and the slope method. These maximum outer segment length values were then used to predict peak cone density using a previously described geometrical model. A comparison between predicted and direct peak cone density measures was then performed. RESULTS The mean bias between observers for estimating maximum outer segment length across methods was less than 2 µm. Cone density predicted from the peak-to-peak method against direct cone density measures showed a mean bias of 6,812 cones/mm2 with 50% of participants displaying a 10% difference or less between predicted and direct cone density values. Cone density derived from the slope method showed a mean bias of -17,929 cones/mm2 relative to direct cone density measures, with only 41% of participants demonstrating less than a 10% difference between direct and predicted cone density values. CONCLUSION Predicted foveal cone density derived from peak-to-peak outer segment length measurements using commercial optical coherence tomography show modest agreement with direct measures of peak cone density from adaptive optics scanning light ophthalmoscopy. The methods used here are imperfect predictors of cone density, however, further exploration of this relationship could reveal a clinically relevant marker of cone structure.
Collapse
Affiliation(s)
- Heather Heitkotter
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, USA
| | - Mitchell T. Allphin
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, USA
| | - Ana Untaroiu
- School of Medicine, Medical College of Wisconsin, Milwaukee, USA
| | - Heun Min
- School of Medicine, Medical College of Wisconsin, Milwaukee, USA
| | - Emma Warr
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, USA
| | - Niamh Wynne
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert F. Cooper
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, USA
- Joint Department of Biomedical Engineering Marquette University and Medical College of Wisconsin, Milwaukee, USA
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, USA
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, USA
- Joint Department of Biomedical Engineering Marquette University and Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
6
|
Domdei N, Ameln J, Gutnikov A, Witten JL, Holz FG, Wahl S, Harmening WM. Cone Density Is Correlated to Outer Segment Length and Retinal Thickness in the Human Foveola. Invest Ophthalmol Vis Sci 2023; 64:11. [PMID: 38064229 PMCID: PMC10709802 DOI: 10.1167/iovs.64.15.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose Assessment of the relationship between in vivo foveolar cone density, cone outer segment length (OSL), and foveal retinal thickness (RT). Methods Foveolar cone density maps covering the central ±300 µm of the retina were derived from adaptive optics scanning laser ophthalmoscopy images. The corresponding maps of foveal cone OSL and RT were derived from high-resolution optical coherence tomography volume scans. Alignment of the two-dimensional maps containing OSL and RT with the cone density map was achieved by placing the location of maximum OSL on the cone density centroid (CDC). Results Across 10 participants (27 ± 9 years; 6 female), cone density at the CDC was found to be between 147,038 and 215,681 cones/mm². The maximum OSL and minimum RT were found to lie between 31 and 40, and 193 and 226 µm, respectively. A significant correlation was observed between cone density at the CDC and maximum OSL (P = 0.001), as well as the minimal RT (P < 0.05). Across all participants, the best fit for the relationship between normalized cone density and normalized OSL within the central 300 µm was given by a quadratic function. Conclusions Using optical coherence tomography-derived measurements of OSL enables to estimate CDC cone density and two-dimensional foveal cone density maps for example in patient eyes unsuitable for adaptive optics imaging. Furthermore, the observation of a fixed relationship between the normalized OSL and cone density points to a conserved mechanism shaping the foveal pit.
Collapse
Affiliation(s)
- Niklas Domdei
- Carl Zeiss Vision International GmbH, Aalen, Germany
| | - Julius Ameln
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | | | - Jenny L Witten
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Siegfried Wahl
- Carl Zeiss Vision International GmbH, Aalen, Germany
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | | |
Collapse
|
7
|
McGwin G, Kar D, Berlin A, Clark ME, Swain TA, Crosson JN, Sloan KR, Owsley C, Curcio CA. Macular and Plasma Xanthophylls Are Higher in Age-related Macular Degeneration than in Normal Aging: Alabama Study on Early Age-related Macular Degeneration 2 Baseline. OPHTHALMOLOGY SCIENCE 2023; 3:100263. [PMID: 36864830 PMCID: PMC9972499 DOI: 10.1016/j.xops.2022.100263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Purpose Quantification of retinal xanthophyll carotenoids in eyes with and without age-related macular degeneration (AMD) via macular pigment optical volume (MPOV), a metric for xanthophyll abundance from dual wavelength autofluorescence, plus correlations to plasma levels, could clarify the role of lutein (L) and zeaxanthin (Z) in health, AMD progression, and supplementation strategies. Design Cross-sectional observational study (NCT04112667). Participants Adults ≥ 60 years from a comprehensive ophthalmology clinic, with healthy maculas or maculas meeting fundus criteria for early or intermediate AMD. Methods Macular health and supplement use was assessed by the Age-related Eye Disease Study (AREDS) 9-step scale and self-report, respectively. Macular pigment optical volume was measured from dual wavelength autofluorescence emissions (Spectralis, Heidelberg Engineering). Non-fasting blood draws were assayed for L and Z using high-performance liquid chromatography. Associations among plasma xanthophylls and MPOV were assessed adjusting for age. Main Outcome Measures Age-related macular degeneration presence and severity, MPOV in fovea-centered regions of radius 2.0° and 9.0°; plasma L and Z (μM/ml). Results Of 809 eyes from 434 persons (89% aged 60-79, 61% female), 53.3% eyes were normal, 28.2% early AMD, and 18.5% intermediate AMD. Macular pigment optical volume 2° and 9° were similar in phakic and pseudophakic eyes, which were combined for analysis. Macular pigment optical volume 2° and 9° and plasma L and Z were higher in early AMD than normal and higher still in intermediate AMD (P < 0.0001). For all participants, higher plasma L was correlated with higher MPOV 2° (Spearman correlation coefficient [Rs] = 0.49; P < 0.0001). These correlations were significant (P < 0.0001) but lower in normal (Rs = 0.37) than early and intermediate AMD (Rs = 0.52 and 0.51, respectively). Results were similar for MPOV 9°. Plasma Z, MPOV 2°, and MPOV 9° followed this same pattern of associations. Associations were not affected by supplement use or smoking status. Conclusions A moderate positive correlation of MPOV with plasma L and Z comports with regulated xanthophyll bioavailability and a hypothesized role for xanthophyll transfer in soft drusen biology. An assumption that xanthophylls are low in AMD retina underlies supplementation strategies to reduce progression risk, which our data do not support. Whether higher xanthophyll levels in AMD are due to supplement use cannot be determined in this study.
Collapse
Key Words
- ALSTAR2, Alabama Study on Early Age-related Macular Degeneration 2
- AMD, age-related macular degeneration
- AREDS, age-related eye disease studies
- Age-related macular degeneration
- Autofluorescence
- BrM, Bruch’s membrane
- HDL, high density lipoprotein
- L, Lutein
- Lutein
- MP, macular pigment
- MPOD, macular pigment optical density
- MPOV, macular pigment optical volume
- Macular xanthophyll pigment
- RPE, retinal pigment epithelium
- Z, Zeaxanthin
- Zeaxanthin
Collapse
Affiliation(s)
- Gerald McGwin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andreas Berlin
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Ophthalmology, University Hospital Wurzburg, Wurzburg, Germany
| | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas A. Swain
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jason N. Crosson
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Retina Consultants of Alabama, Birmingham, Alabama
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Computer Science, School of Arts and Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
8
|
Sabesan R, Grieve K, Hammer DX, Ji N, Marcos S. Introduction to the Feature Issue on Adaptive Optics for Biomedical Applications. BIOMEDICAL OPTICS EXPRESS 2023; 14:1772-1776. [PMID: 37078031 PMCID: PMC10110319 DOI: 10.1364/boe.488044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 05/03/2023]
Abstract
The guest editors introduce a feature issue commemorating the 25th anniversary of adaptive optics in biomedical research.
Collapse
Affiliation(s)
- Ramkumar Sabesan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, and CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Na Ji
- Department of Physics, Department of Molecular & Cellular Biology, University of California, Berkeley, CA 94720, USA
| | - Susana Marcos
- Visual Optics and Biophotonics Laboratory, Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Calle Serrano 121, Madrid, 28006, Spain
- Center for Visual Sciences; The Institute of Optics and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Patterson EJ, Kalitzeos A, Kane TM, Singh N, Kreis J, Pennesi ME, Hardcastle AJ, Neitz J, Neitz M, Michaelides M, Carroll J. Foveal Cone Structure in Patients With Blue Cone Monochromacy. Invest Ophthalmol Vis Sci 2022; 63:23. [PMID: 36301530 PMCID: PMC9624264 DOI: 10.1167/iovs.63.11.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Blue cone monochromacy (BCM) is a rare inherited cone disorder in which both long- (L-) and middle- (M-) wavelength sensitive cone classes are either impaired or nonfunctional. Assessing genotype-phenotype relationships in BCM can improve our understanding of retinal development in the absence of functional L- and M-cones. Here we examined foveal cone structure in patients with genetically-confirmed BCM, using adaptive optics scanning light ophthalmoscopy (AOSLO). Methods Twenty-three male patients (aged 6-75 years) with genetically-confirmed BCM were recruited for high-resolution imaging. Eight patients had a deletion of the locus control region (LCR), and 15 had a missense mutation-Cys203Arg-affecting the first two genes in the opsin gene array. Foveal cone structure was assessed using confocal and non-confocal split-detection AOSLO across a 300 × 300 µm area, centered on the location of peak cell density. Results Only one of eight patients with LCR deletions and 10 of 15 patients with Cys203Arg mutations had analyzable images. Mean total cone density for Cys203Arg patients was 16,664 ± 11,513 cones/mm2 (n = 10), which is, on average, around 40% of normal. Waveguiding cone density was 2073 ± 963 cones/mm2 (n = 9), which was consistent with published histological estimates of S-cone density in the normal eye. The one patient with an LCR deletion had a total cone density of 10,246 cones/mm2 and waveguiding density of 1535 cones/mm2. Conclusions Our results show that BCM patients with LCR deletions and Cys203Arg mutations have a population of non-waveguiding photoreceptors, although the spectral identity and level of function remain unknown.
Collapse
Affiliation(s)
- Emily J. Patterson
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Angelos Kalitzeos
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Thomas M. Kane
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Navjit Singh
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Joseph Kreis
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Mark E. Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Alison J. Hardcastle
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Jay Neitz
- Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Maureen Neitz
- Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Joseph Carroll
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|