Huang B, Kang L, Tsang VTC, Lo CTK, Wong TTW. Deep learning-assisted smartphone-based quantitative microscopy for label-free peripheral blood smear analysis.
BIOMEDICAL OPTICS EXPRESS 2024;
15:2636-2651. [PMID:
38633093 PMCID:
PMC11019683 DOI:
10.1364/boe.511384]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 04/19/2024]
Abstract
Hematologists evaluate alterations in blood cell enumeration and morphology to confirm peripheral blood smear findings through manual microscopic examination. However, routine peripheral blood smear analysis is both time-consuming and labor-intensive. Here, we propose using smartphone-based autofluorescence microscopy (Smart-AM) for imaging label-free blood smears at subcellular resolution with automatic hematological analysis. Smart-AM enables rapid and label-free visualization of morphological features of normal and abnormal blood cells (including leukocytes, erythrocytes, and thrombocytes). Moreover, assisted with deep-learning algorithms, this technique can automatically detect and classify different leukocytes with high accuracy, and transform the autofluorescence images into virtual Giemsa-stained images which show clear cellular features. The proposed technique is portable, cost-effective, and user-friendly, making it significant for broad point-of-care applications.
Collapse