1
|
Yimingjiang M, Geng S, Ye Z, Guan Y, Liu X, Huang G. Research Advances in Terahertz Technology for Skin Detection. Photobiomodul Photomed Laser Surg 2025; 43:1-7. [PMID: 39841526 DOI: 10.1089/photob.2024.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Background: With the continuous development of Terahertz technology and its high sensitivity to water, Terahertz technology has been widely applied in various research areas within the field of biomedicine, such as research onskin wounds and burns, demonstrating numerous advantages and potential. Objective: The aim of this study is to summarize and conclude the current research status of Terahertz radiation in skin wounds, burns, and melanoma. Additionally, it seeks toreveal the development status of Terahertz in skin wound models and analyze the short comings of Terahertz in detecting such models at the present stage. Methods: We retrieved relevant literature published from the inception of the Web of Science and CNKI databases up to 2024. The search terms included "THz," "Terahertz," "skin," "wound," "burn," and "melanoma." High-quality articles were included after rigorous screening. Results and Conclusions: This review explores the progress of terahertz radiation technology in the treatment and diagnosis of skin wounds and other related diseases. The results of its interaction with skin tissues provide valuable insights for future research. Terahertz radiation imaging has proven to be effective in assessing burn severity, capturing changes in edema, measuring exudates in dressings, assisting in burn grading and detection, and quantifying wound changes over time. Terahertz technology offers significant advantages in trauma assessment, which has accelerated its development and adoption in this field. (4) However, fs-THz radiation has been found to have the potential drawback of affecting wound healing. This finding necessitates careful consideration before application, and further research is warranted to explore its role in burn assessment and other medical applications.
Collapse
Affiliation(s)
| | - Shaohui Geng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zi Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yiwei Guan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Xu K, Harris ZB, Vahey P, Arbab MH. THz Polarimetric Imaging of Carbon Fiber-Reinforced Composites Using the Portable Handled Spectral Reflection (PHASR) Scanner. SENSORS (BASEL, SWITZERLAND) 2024; 24:7467. [PMID: 39686004 DOI: 10.3390/s24237467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Recent advancements in novel fiber-coupled and portable terahertz (THz) spectroscopic imaging technology have accelerated applications in nondestructive testing (NDT). Although the polarization information of THz waves can play a critical role in material characterization, there are few demonstrations of polarization-resolved THz imaging as an NDT modality due to the deficiency of such polarimetric imaging devices. In this paper, we have inspected industrial carbon fiber composites using a portable and handheld imaging scanner in which the THz polarizations of two orthogonal channels are simultaneously captured by two photoconductive antennas. We observed significant polarimetric differences between the two-channel images of the same sample and the resulting THz Stokes vectors, which are attributed to the anisotropic conductivity of carbon fiber composites. Using both polarimetric channels, we can visualize the superficial and underlying interfaces of the first laminate. These results pave the way for the future applications of THz polarimetry to the assessment of coatings or surface quality on carbon fiber-reinforced substrates.
Collapse
Affiliation(s)
- Kuangyi Xu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Zachery B Harris
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Paul Vahey
- Boeing Research & Technology, Seattle, WA 98108, USA
| | - M Hassan Arbab
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
3
|
Das P, Pal D, Roy S, Chaudhuri S, Kesh SS, Basak P, Nandi SK. Unveiling advanced strategies for therapeutic stem cell interventions in severe burn injuries: a comprehensive review. Int J Surg 2024; 110:6382-6401. [PMID: 38869979 PMCID: PMC11487052 DOI: 10.1097/js9.0000000000001812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
This comprehensive review explores the complex terrain of stem cell therapies as a potential therapeutic frontier in the healing of complicated burn wounds. Serious tissue damage, impaired healing processes, and possible long-term consequences make burn wounds a complex problem. An in-depth review is required since, despite medical progress, existing methods for treating severe burn wounds have significant limitations. Burn wounds are difficult to heal because they cause extensive tissue damage. The challenges of burn injury-induced tissue regeneration and functional recovery are also the subject of this review. Although there is a lot of promise in current stem cell treatments, there are also some limitations with scalability, finding the best way to transport the cells, and finding consistent results across different types of patients. To shed light on how to improve stem cell interventions to heal severe burn wounds, this review covers various stem cell applications in burn wounds and examines these obstacles. To overcome these obstacles, one solution is to enhance methods of stem cell distribution, modify therapies according to the severity of the burn, and conduct more studies on how stem cell therapy affects individual patients. Novel solutions may also be possible through the combination of cutting-edge technologies like nanotechnology and biotechnology. This review seeks to increase stem cell interventions by analyzing present challenges and suggesting strategic improvements. The goal is to provide a more effective and tailored way to repair serious burn wounds.
Collapse
Affiliation(s)
- Pratik Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
- School of Bioscience and Engineering, Jadavpur University
| | - Debajyoti Pal
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
| | - Sudipta Roy
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
| | - Shubhamitra Chaudhuri
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Shyam S. Kesh
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University
| | - Samit K. Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
| |
Collapse
|
4
|
Harris ZB, Xu K, Arbab MH. A handheld polarimetric imaging device and calibration technique for accurate mapping of terahertz Stokes vectors. Sci Rep 2024; 14:17714. [PMID: 39085453 PMCID: PMC11292021 DOI: 10.1038/s41598-024-68530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
In recent years, handheld and portable terahertz instruments have been in rapid development for various applications ranging from non-destructive testing to biomedical imaging and sensing. For instance, we have deployed our Portable Handheld Spectral Reflection (PHASR) Scanners for in vivo full-spectroscopic imaging of skin burns in large animal models in operating room settings. In this paper, we debut the polarimetric version of the PHASR Scanner, and describe a generalized calibration technique to map the spatial and spectral dependence of the Jones matrix of an imaging scanner across its field of view. Our design is based on placement of two orthogonal photoconductive antenna (PCA) detectors separated by a polarizing beam splitter in the PHASR Scanner housing. We show that as few as three independent measurements of a well-characterized polarimetric calibration target are sufficient to determine the polarization state of the incident beam at the sample location, as well as to extract the Jones propagation matrix from the sample location to the detectors. We have tested the accuracy of our scanner by validating polarimetric measurements obtained from a birefringent crystal rotated to various angles, as compared to the theoretically predicted response of the sample. This new version of our PHASR scanner can be used for high-speed imaging and investigation of heterogeneity of polarization-sensitive samples in the field.
Collapse
Affiliation(s)
- Zachery B Harris
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, USA
| | - Kuangyi Xu
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, USA
| | - M Hassan Arbab
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
5
|
Xu K, Arbab MH. Terahertz polarimetric imaging of biological tissue: Monte Carlo modeling of signal contrast mechanisms due to Mie scattering. BIOMEDICAL OPTICS EXPRESS 2024; 15:2328-2342. [PMID: 38633080 PMCID: PMC11019684 DOI: 10.1364/boe.515623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
Many promising biomedical applications have been proposed for terahertz (THz) spectroscopy and diagnostic imaging techniques. Polarimetric imaging systems are generally useful for enhancing imaging contrasts, yet the interplay between THz polarization changes and the random discrete structures in biological samples is not well understood. In this work, we performed Monte Carlo simulations of the propagation of polarized THz waves in skin and adipose tissues based on the Mie scattering from intrinsic structures, such as hair follicles or sweat glands. We show that the polarimetric contrasts are distinctly affected by concentration, size and dielectric properties of the scatterers, as well as the frequency and polarization of the incident THz waves. We describe the experimental requirements for observing and extracting these polarimetric signals due to the low energy and small angular spread of the back-scattered THz radiation. We analyzed the spatially integrated Mueller matrices of samples in the normal-incidence back-scattering geometry. We show that the frequency-dependent degree of polarization (DOP) can be used to infer the concentrations and dielectric contents of the scattering structures. Our modeling approach can be used to inform the design of the imaging modalities and the interpretation of the spectroscopic data in future terahertz biomedical imaging applications.
Collapse
Affiliation(s)
- Kuangyi Xu
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - M. Hassan Arbab
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| |
Collapse
|
6
|
Wilson RH, Rowland R, Kennedy GT, Campbell C, Joe VC, Chin TL, Burmeister DM, Christy RJ, Durkin AJ. Review of machine learning for optical imaging of burn wound severity assessment. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:020901. [PMID: 38361506 PMCID: PMC10869118 DOI: 10.1117/1.jbo.29.2.020901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Significance Over the past decade, machine learning (ML) algorithms have rapidly become much more widespread for numerous biomedical applications, including the diagnosis and categorization of disease and injury. Aim Here, we seek to characterize the recent growth of ML techniques that use imaging data to classify burn wound severity and report on the accuracies of different approaches. Approach To this end, we present a comprehensive literature review of preclinical and clinical studies using ML techniques to classify the severity of burn wounds. Results The majority of these reports used digital color photographs as input data to the classification algorithms, but recently there has been an increasing prevalence of the use of ML approaches using input data from more advanced optical imaging modalities (e.g., multispectral and hyperspectral imaging, optical coherence tomography), in addition to multimodal techniques. The classification accuracy of the different methods is reported; it typically ranges from ∼ 70 % to 90% relative to the current gold standard of clinical judgment. Conclusions The field would benefit from systematic analysis of the effects of different input data modalities, training/testing sets, and ML classifiers on the reported accuracy. Despite this current limitation, ML-based algorithms show significant promise for assisting in objectively classifying burn wound severity.
Collapse
Affiliation(s)
- Robert H. Wilson
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Medicine, Orange, California, United States
- University of California, Irvine, Health Policy Research Institute, Irvine, California, United States
| | - Rebecca Rowland
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Gordon T. Kennedy
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Chris Campbell
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Victor C. Joe
- UC Irvine Health Regional Burn Center, Orange, California, United States
| | | | - David M. Burmeister
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, Maryland, United States
| | - Robert J. Christy
- UT Health San Antonio, Military Health Institute, San Antonio, Texas, United States
| | - Anthony J. Durkin
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
| |
Collapse
|
7
|
Xu K, Arbab MH. Terahertz polarimetric imaging of biological tissues: Monte Carlo modeling of signal contrast mechanisms due to Mie scattering. RESEARCH SQUARE 2023:rs.3.rs-3745690. [PMID: 38168438 PMCID: PMC10760297 DOI: 10.21203/rs.3.rs-3745690/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Many promising biomedical applications have been proposed for terahertz (THz) spectroscopy and diagnostic imaging techniques. Polarimetric imaging systems are generally useful for enhancing imaging contrasts, yet the interplay between THz polarization changes and the random discrete structures in biological samples are not well understood. In this work, we performed Monte Carlo simulations of the propagation of polarized THz waves in skin and adipose tissues based on the Mie scattering from intrinsic structures, such as hair follicles or sweat glands. We show that the polarimetric contrasts are distinctly affected by concentration, size and dielectric properties of the scatterers, as well as the frequency and polarization of the incident THz waves. We describe the experimental requirements for observing and extracting these polarimetric signals due to the low energy and small angular spread of the back-scattered THz radiation. We analyzed the spatially integrated Mueller matrices of samples in the normal-incidence back-scattering geometry. We show that the frequency-dependent degree of polarization (DOP) can be used to infer the concentrations and dielectric contents of the scattering structures. Our modeling approach can be used to inform the design of the imaging modalities and the interpretation of the spectroscopic data in future terahertz biomedical imaging applications.
Collapse
Affiliation(s)
- Kuangyi Xu
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - M. Hassan Arbab
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| |
Collapse
|