1
|
Li Q, Yu S, Li Z, Liu W, Cheng H, Chen S. Metasurface-enhanced biomedical spectroscopy. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:1045-1068. [PMID: 40290277 PMCID: PMC12019954 DOI: 10.1515/nanoph-2024-0589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/18/2024] [Indexed: 04/30/2025]
Abstract
Enhancing the sensitivity of biomedical spectroscopy is crucial for advancing medical research and diagnostics. Metasurfaces have emerged as powerful platforms for enhancing the sensitivity of various biomedical spectral detection technologies. This capability arises from their unparalleled ability to improve interactions between light and matter through the localization and enhancement of light fields. In this article, we review representative approaches and recent advances in metasurface-enhanced biomedical spectroscopy. We provide a comprehensive discussion of various biomedical spectral detection technologies enhanced by metasurfaces, including infrared spectroscopy, Raman spectroscopy, fluorescence spectroscopy, and other spectral modalities. We demonstrate the advantages of metasurfaces in improving detection sensitivity, reducing detection limits, and achieving rapid biomolecule detection while discussing the challenges associated with the design, preparation, and stability of metasurfaces in biomedical detection procedures. Finally, we explore future development trends of metasurfaces for enhancing biological detection sensitivity and emphasize their wide-ranging applications.
Collapse
Affiliation(s)
- Qiang Li
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Shiwang Yu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Zhancheng Li
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Wenwei Liu
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Hua Cheng
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
| | - Shuqi Chen
- The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin300071, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin300350, China
- The Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China
| |
Collapse
|
2
|
Xie P, Xu X, Jiao R, Wang G. Highly sensitive intensity-type polarization chiral sensor with reference light. OPTICS LETTERS 2024; 49:5276-5279. [PMID: 39270284 DOI: 10.1364/ol.536603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Optical rotation is a special phenomenon in which the plane of polarization of polarized light is rotated after passing through a chiral medium. This work first, to our knowledge, presents and optimizes a polarization chiral sensor with a reference light on the basis of a weak measurement light path. The influences of phase shift and polarization angle difference on sensitivity were theoretically optimized and verified experimentally. The introduction of a reference light further reduced the impact of light source fluctuations on the detection signal, improving the signal-to-noise ratio and reducing the optical rotation resolution to 2 × 10-5 rad. This method has the characteristics of low cost, high sensitivity, and real-time rapid detection, making it potentially applicable in the field of chemical analysis, such as chiral molecule detection.
Collapse
|
3
|
Zhao X, Yang C, Chen X, Sun Y, Liu W, Ge Q, Yang J. Characteristic fingerprint spectrum of α-synuclein mutants on terahertz time-domain spectroscopy. Biophys J 2024; 123:1264-1273. [PMID: 38615192 PMCID: PMC11140463 DOI: 10.1016/j.bpj.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/02/2024] [Accepted: 04/11/2024] [Indexed: 04/15/2024] Open
Abstract
α-Synuclein, a presynaptic neuronal protein encoded by the SNCA gene, is involved in the pathogenesis of Parkinson's disease. Point mutations and multiplications of α-synuclein (A30P and A53T) are correlated with early-onset Parkinson's disease characterized by rapid progression and poor prognosis. Currently, the clinical identification of SNCA variants, especially disease-related A30P and A53T mutants, remains challenging and also time consuming. This study aimed to develop a novel label-free detection method for distinguishing the SNCA mutants using transmission terahertz (THz) time-domain spectroscopy. The protein was spin-coated onto the quartz to form a thin film, which was measured using THz time-domain spectroscopy. The spectral characteristics of THz broadband pulse waves of α-synuclein protein variants (SNCA wild type, A30P, and A53T) at different frequencies were analyzed via Fourier transform. The amplitude A intensity (AWT, AA30P, and AA53T) and peak occurrence time in THz time-domain spectroscopy sensitively distinguished the three protein variants. The phase φ difference in THz frequency domain followed the trend of φWT > φA30P > φA53T. There was a significant difference in THz frequency amplitude A' corresponding to the frequency ranging from 0.4 to 0.66 THz (A'A53T > A'A30P > A'WT). At a frequency of 0.4-0.6 THz, the transmission T of THz waves distinguished three variants (TA53T > TA30P > TWT), whereas there was no difference in the transmission T at 0.66 THz. The SNCA wild-type protein and two mutant variants (A30P and A53T) had distinct characteristic fingerprint spectra on THz time-domain spectroscopy. This novel label-free detection method has great potential for the differential diagnosis of Parkinson's disease subtypes.
Collapse
Affiliation(s)
- Xiaofang Zhao
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Yu Sun
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Qinggang Ge
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China.
| |
Collapse
|
4
|
Lin T, Huang Y, Zhong S, Shi T, Sun F, Zhong Y, Zeng Q, Zhang Q, Cui D. Passive trapping of biomolecules in hotspots with all-dielectric terahertz metamaterials. Biosens Bioelectron 2024; 251:116126. [PMID: 38367565 DOI: 10.1016/j.bios.2024.116126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Electromagnetic metamaterials feature the capability of squeezing photons into hotspot regions of high intensity near-field enhancement for strong light-matter interaction, underpinning the next generation of emerging biosensors. However, randomly dispersed biomolecules around the hotspots lead to weak interactions. Here, we demonstrate an all-silicon dielectric terahertz metamaterial sensor design capable of passively trapping biomoleculars into the resonant cavities confined with powerful electric field. Specifically, multiple controllable high-quality factor resonances driven by bound states in the continuum (BIC) are realized by employing longitudinal symmetry breaking. The dielectric metamaterial sensor with nearly 15.2 experimental figure-of-merit enabling qualitative and quantitative identification of different amino acids by delivering biomolecules to the hotspots for strong light-matter interactions. It is envisioned that the presented strategy will enlighten high-performance meta-sensors design from microwaves to visible frequencies, and serve as a potential platform for microfluidic sensing, biomolecular capture, and sorting devices.
Collapse
Affiliation(s)
- Tingling Lin
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China; Institute of Precision Instrument and Intelligent Measurement & Control, Fuzhou University, Fuzhou, 350108, China
| | - Yi Huang
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China; Institute of Precision Instrument and Intelligent Measurement & Control, Fuzhou University, Fuzhou, 350108, China.
| | - Shuncong Zhong
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China; Institute of Precision Instrument and Intelligent Measurement & Control, Fuzhou University, Fuzhou, 350108, China.
| | - Tingting Shi
- School of Economics and Management, Minjiang University, Fuzhou, 350108, China
| | - Fuwei Sun
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China; Institute of Precision Instrument and Intelligent Measurement & Control, Fuzhou University, Fuzhou, 350108, China
| | - Yujie Zhong
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China; Institute of Precision Instrument and Intelligent Measurement & Control, Fuzhou University, Fuzhou, 350108, China
| | - Qiuming Zeng
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China; Institute of Precision Instrument and Intelligent Measurement & Control, Fuzhou University, Fuzhou, 350108, China
| | - Qiukun Zhang
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China; Institute of Precision Instrument and Intelligent Measurement & Control, Fuzhou University, Fuzhou, 350108, China
| | - Daxiang Cui
- Department of Bio-Nano Science and Engineering, Shanghai Jiaotong University, Shanghai, 200030, China
| |
Collapse
|