1
|
Wang L, Wang C, Li Q, Fu R, Xu C, Xu M. Quantitative evaluation of the site-dependent cell viability in three-dimensional hepatocyte spheroids based on dynamic optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:035003. [PMID: 40134833 PMCID: PMC11934154 DOI: 10.1117/1.jbo.30.3.035003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 03/27/2025]
Abstract
Significance Hepatocyte spheroids (HCSs) are three-dimensional (3D) in vitro models that exhibit a multilayered structure with site-dependent cell viability. The non-invasive identification of HCS structure and viability variation is essential in fully exploiting the potential of HCS as a model for liver disease research. Aim We aim to achieve long-term, non-invasive monitoring and quantification of HCS cell viability based on dynamic optical coherence tomography (D-OCT) and enhance visualization of HCS internal activity with D-OCT pseudo-color images. Approach We employed D-OCT based on power spectrum analysis with an appropriate optical coherence tomography time-series image acquisition rate to obtain the motion frequency distribution of cells within HCS, thus distinguishing and segmenting the viable and necrotic cell layers based on the average frequency of cellular activity, and quantify the tissue activity using the pixel ratio of the segmented viable region to the total spheroid region. Meanwhile, we used the hue saturation value color mapping method to enable enhanced visualization and high-precision segmentation of viable and necrotic cell layers in HCS. Results The feasibility of the D-OCT method was verified experimentally with three sets of HCS samples (HCS-2000, HCS-5000, and HCS-10000) by comparison with a confocal laser scanning microscope. The cells in C3A-HCS were found to be active mainly in the range of 8 to 13 Hz by D-OCT detection. 3D D-OCT pseudo-color images of HCS with a maximum diameter of 450 μ m were displayed, and the 3D structures of necrotic and viable cell layers were identified by mask segmentation based on the average cell activity frequency threshold (10.5 Hz). The longitudinal necrotic process of three sets of HCS samples with differing inoculated cell numbers was monitored and quantified over 29 days. Conclusions The employed D-OCT method can be used to quantitatively evaluate the site-dependent cell viability in HCS and possesses the potential for long-term, non-invasive monitoring and quantification of HCS viability.
Collapse
Affiliation(s)
- Ling Wang
- Hangzhou Dianzi University, Automation College, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou, China
| | - Chang Wang
- Hangzhou Dianzi University, Automation College, Hangzhou, China
| | - Qiansen Li
- Hangzhou Dianzi University, Automation College, Hangzhou, China
| | - Rongzhen Fu
- Hangzhou Dianzi University, Automation College, Hangzhou, China
| | - Chen Xu
- Hangzhou Dianzi University, Automation College, Hangzhou, China
| | - Mingen Xu
- Hangzhou Dianzi University, Automation College, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou, China
| |
Collapse
|
2
|
Geyer SH, Ceci Ginistrelli L, Ilmer T, Schwendt KM, Mendjan S, Weninger WJ. Three-dimensional structural and metric characterisation of cardioids. Front Cell Dev Biol 2024; 12:1426043. [PMID: 39119041 PMCID: PMC11306051 DOI: 10.3389/fcell.2024.1426043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Exact three-dimensional (3D) structural information of developing organoids is key for optimising organoid generation and for studying experimental outcomes in organoid models. We set up a 3D imaging technique and studied complexly arranged native and experimentally challenged cardioids of two stages of remodelling. The imaging technique we employed is S-HREM (Scanning High Resolution Episcopic Microscopy), a variant of HREM, which captures multiple images of subsequently exposed surfaces of resin blocks and automatically combines them to large sized digital volume data of voxels sizes below 1 μm3. We provide precise volumetric information of the examined specimens and their single components and comparisons between stages in terms of volume and micro- and macroanatomic structure. We describe the 3D arrangement and lining of different types of cavities and their changes between day 10 and day 14 and map the various cell types to their precise spatial and structural environment. Exemplarily, we conducted semiautomatic counts of nuclei. In cryo-injured cardioids, we examined the extension and composition of the injured areas. Our results demonstrate the high quality and the great potential of digital volume data produced with S-HREM. It also provides sound metric and structural information, which assists production of native and experimentally challenged left ventricle cardioids and interpretation of their structural remodelling.
Collapse
Affiliation(s)
- Stefan H. Geyer
- Division of Anatomy, Center for Anatomy and Cell Biology, MIC, Medical University of Vienna, Vienna, Austria
| | - Lavinia Ceci Ginistrelli
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Vienna, Austria
| | - Tobias Ilmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Vienna, Austria
| | - Karoline M. Schwendt
- Division of Anatomy, Center for Anatomy and Cell Biology, MIC, Medical University of Vienna, Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Vienna, Austria
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J. Weninger
- Division of Anatomy, Center for Anatomy and Cell Biology, MIC, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Chen K, Swanson S, Bizheva K. Line-field dynamic optical coherence tomography platform for volumetric assessment of biological tissues. BIOMEDICAL OPTICS EXPRESS 2024; 15:4162-4175. [PMID: 39022542 PMCID: PMC11249681 DOI: 10.1364/boe.527797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Dynamic optical coherence tomography (dOCT) utilizes time-dependent signal intensity fluctuations to enhance contrast in OCT images and indirectly probe physiological processes in cells. Majority of the dOCT studies published so far are based on acquisition of 2D images (B-scans or C-scans) by utilizing point-scanning Fourier domain (spectral or swept-source) OCT or full-field OCT respectively, primarily due to limitations in the image acquisition rate. Here we introduce a novel, high-speed spectral domain line-field dOCT (SD-LF-dOCT) system and image acquisition protocols designed for fast, volumetric dOCT imaging of biological tissues. The imaging probe is based on an exchangeable afocal lens pair that enables selection of combinations of transverse resolution (from 1.1 µm to 6.4 µm) and FOV (from 250 × 250 µm2 to 1.4 × 1.4 mm2), suitable for different biomedical applications. The system offers axial resolution of ∼ 1.9 µm in biological tissue, assuming an average refractive index of 1.38. Maximum sensitivity of 90.5 dB is achieved for 3.5 mW optical imaging power at the tissue surface and maximum camera acquisition rate of 2,000 fps. Volumetric dOCT images acquired with the SD-LF-dOCT system from plant tissue (cucumber), animal tissue (mouse liver) and human prostate carcinoma spheroids allow for volumetric visualization of the tissues' cellular and sub-cellular structures and assessment of cellular motility.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Physics and Astronomy, University of Waterloo, Waterloo N2 L 3G1, ON, Canada
| | - Stephanie Swanson
- Department of Physics and Astronomy, University of Waterloo, Waterloo N2 L 3G1, ON, Canada
| | - Kostadinka Bizheva
- Department of Physics and Astronomy, University of Waterloo, Waterloo N2 L 3G1, ON, Canada
- School of Optometry and Vision Sciences, University of Waterloo, Waterloo, ON, Canada
- System Design Engineering Department, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
4
|
Wang B, Ganjee R, Khandaker I, Flohr K, He Y, Li G, Wesalo J, Sahel JA, da Silva S, Pi S. Deep learning based characterization of human organoids using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:3112-3127. [PMID: 38855657 PMCID: PMC11161340 DOI: 10.1364/boe.515781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024]
Abstract
Organoids, derived from human induced pluripotent stem cells (hiPSCs), are intricate three-dimensional in vitro structures that mimic many key aspects of the complex morphology and functions of in vivo organs such as the retina and heart. Traditional histological methods, while crucial, often fall short in analyzing these dynamic structures due to their inherently static and destructive nature. In this study, we leveraged the capabilities of optical coherence tomography (OCT) for rapid, non-invasive imaging of both retinal, cerebral, and cardiac organoids. Complementing this, we developed a sophisticated deep learning approach to automatically segment the organoid tissues and their internal structures, such as hollows and chambers. Utilizing this advanced imaging and analysis platform, we quantitatively assessed critical parameters, including size, area, volume, and cardiac beating, offering a comprehensive live characterization and classification of the organoids. These findings provide profound insights into the differentiation and developmental processes of organoids, positioning quantitative OCT imaging as a potentially transformative tool for future organoid research.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Razieh Ganjee
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Irona Khandaker
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Keevon Flohr
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yuanhang He
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guang Li
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Wesalo
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Susana da Silva
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Liu Y, Abd El-Sadek I, Morishita R, Makita S, Mori T, Furukawa A, Matsusaka S, Yasuno Y. Neural-network based high-speed volumetric dynamic optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:3216-3239. [PMID: 38855683 PMCID: PMC11161370 DOI: 10.1364/boe.519964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024]
Abstract
We demonstrate deep-learning neural network (NN)-based dynamic optical coherence tomography (DOCT), which generates high-quality logarithmic-intensity-variance (LIV) DOCT images from only four OCT frames. The NN model is trained for tumor spheroid samples using a customized loss function: the weighted mean absolute error. This loss function enables highly accurate LIV image generation. The fidelity of the generated LIV images to the ground truth LIV images generated using 32 OCT frames is examined via subjective image observation and statistical analysis of image-based metrics. Fast volumetric DOCT imaging with an acquisition time of 6.55 s/volume is demonstrated using this NN-based method.
Collapse
Affiliation(s)
- Yusong Liu
- Computational Optics Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- Department of Physics, Faculty of Science, Damietta University, New Damietta City 34517, Damietta, Egypt
| | - Rion Morishita
- Computational Optics Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Tomoko Mori
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Atsuko Furukawa
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
6
|
Ren C, Hao S, Wang F, Matt A, Amaral MM, Yang D, Wang L, Zhou C. Dynamic contrast optical coherence tomography (DyC-OCT) for label-free live cell imaging. Commun Biol 2024; 7:278. [PMID: 38448627 PMCID: PMC10918170 DOI: 10.1038/s42003-024-05973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Dynamic contrast optical coherence tomography (DyC-OCT), an emerging imaging method, utilizes fluctuation patterns in OCT signals to enhance contrast, thereby enabling non-invasive label-free volumetric live cell imaging. In this mini review, we explain the core concepts behind DyC-OCT image formation and its system configurations, serving as practical guidance for future DyC-OCT users. Subsequently, we explore its applications in delivering high-quality, contrast-enhanced images of cellular morphology, as well as in monitoring changes in cellular activity/viability assay experiments.
Collapse
Affiliation(s)
- Chao Ren
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
- Imaging Science Ph.D. Program, Washington University in St Louis, St. Louis, MO, USA
| | - Senyue Hao
- Department of Electrical & Systems Engineering, Washington University in St Louis, St. Louis, MO, USA
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
| | - Abigail Matt
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
| | - Marcello Magri Amaral
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
- Biomedical Engineering, Universidade Brasil, Sao Paulo, Brazil
| | - Daniel Yang
- Division of Allergy and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leyao Wang
- Division of Allergy and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA.
- Imaging Science Ph.D. Program, Washington University in St Louis, St. Louis, MO, USA.
- Department of Electrical & Systems Engineering, Washington University in St Louis, St. Louis, MO, USA.
| |
Collapse
|
7
|
Abd El-Sadek I, Morishita R, Mori T, Makita S, Mukherjee P, Matsusaka S, Yasuno Y. Label-free visualization and quantification of the drug-type-dependent response of tumor spheroids by dynamic optical coherence tomography. Sci Rep 2024; 14:3366. [PMID: 38336794 PMCID: PMC10858208 DOI: 10.1038/s41598-024-53171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
We demonstrate label-free dynamic optical coherence tomography (D-OCT)-based visualization and quantitative assessment of patterns of tumor spheroid response to three anti-cancer drugs. The study involved treating human breast adenocarcinoma (MCF-7 cell-line) with paclitaxel (PTX), tamoxifen citrate (TAM), and doxorubicin (DOX) at concentrations of 0 (control), 0.1, 1, and 10 µM for 1, 3, and 6 days. In addition, fluorescence microscopy imaging was performed for reference. The D-OCT imaging was performed using a custom-built OCT device. Two algorithms, namely logarithmic intensity variance (LIV) and late OCT correlation decay speed (OCDS[Formula: see text]) were used to visualize the tissue dynamics. The spheroids treated with 0.1 and 1 µM TAM appeared similar to the control spheroid, whereas those treated with 10 µM TAM had significant structural corruption and decreasing LIV and OCDS[Formula: see text] over treatment time. The spheroids treated with PTX had decreasing volumes and decrease of LIV and OCDS[Formula: see text] signals over time at most PTX concentrations. The spheroids treated with DOX had decreasing and increasing volumes over time at DOX concentrations of 1 and 10 µM, respectively. Meanwhile, the LIV and OCDS[Formula: see text] signals decreased over treatment time at all DOX concentrations. The D-OCT, particularly OCDS[Formula: see text], patterns were consistent with the fluorescence microscopic patterns. The diversity in the structural and D-OCT results among the drug types and among the concentrations are explained by the mechanisms of the drugs. The presented results suggest that D-OCT is useful for evaluating the difference in the tumor spheroid response to different drugs and it can be a useful tool for anti-cancer drug testing.
Collapse
Affiliation(s)
- Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
- Department of Physics, Faculty of Science, Damietta University, New Damietta City, Damietta, 34517, Egypt
| | - Rion Morishita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Tomoko Mori
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
8
|
Petrella F, Cassina EM, Libretti L, Pirondini E, Raveglia F, Tuoro A. Mesenchymal Stromal Cell Therapy for Thoracic Surgeons: An Update. J Pers Med 2023; 13:1632. [PMID: 38138859 PMCID: PMC10744666 DOI: 10.3390/jpm13121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Stem cells are undifferentiated cells presenting extensive self-renewal features and the ability to differentiate "in vitro" and "in vivo" into a range of lineage cells, like chondrogenic, osteogenic and adipogenic lineages when cultured in specific inducing media. Two major domains of clinical applications of stem cells in thoracic surgery have been investigated: regenerative medicine, which is a section of translational research in tissue engineering focusing on the replacement, renewal or regeneration of cells, tissues and organs to re-establish damaged physiologic functions; drug loading and delivery, representing a new branch proposing stem cells as carriers to provide selected districts with anti-cancer agents for targeted treatments.
Collapse
Affiliation(s)
- Francesco Petrella
- Department of Thoracic Surgery, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (E.M.C.); (L.L.); (E.P.); (F.R.); (A.T.)
| | | | | | | | | | | |
Collapse
|
9
|
Leitgeb RA, Bouma B, Grieve K, Hendon C, Podoleanu A, Wojtkowski M, Yasuno Y. 30 Years of Optical Coherence Tomography: introduction to the feature issue. BIOMEDICAL OPTICS EXPRESS 2023; 14:5484-5487. [PMID: 37854547 PMCID: PMC10581797 DOI: 10.1364/boe.505569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 10/20/2023]
Abstract
The guest editors introduce a feature issue commemorating the 30th anniversary of Optical Coherence Tomography.
Collapse
Affiliation(s)
- Rainer A. Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Brett Bouma
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kate Grieve
- Quinze-Vingts Hospital, and Vision Institute, Paris 75001, France
| | - Christine Hendon
- Department of Electrical Engineering, Columbia University, New York City, NY 10027, USA
| | - Adrian Podoleanu
- Applied Optics Group, University of Kent, Canterbury, CT2 7NR, UK
| | - Maciej Wojtkowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
10
|
Mukherjee P, Fukuda S, Lukmanto D, Tran TH, Okada K, Makita S, El-Sadek IA, Lim Y, Yasuno Y. Renal tubular function and morphology revealed in kidney without labeling using three-dimensional dynamic optical coherence tomography. Sci Rep 2023; 13:15324. [PMID: 37714913 PMCID: PMC10504276 DOI: 10.1038/s41598-023-42559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Renal tubule has distinct metabolic features and functional activity that may be altered during kidney disease. In this paper, we present label-free functional activity imaging of renal tubule in normal and obstructed mouse kidney models using three-dimensional (3D) dynamic optical coherence tomography (OCT) ex vivo. To create an obstructed kidney model, we ligated the ureter of the left kidney for either 7 or 14 days. Two different dynamic OCT (DOCT) methods were implemented to access the slow and fast activity of the renal tubules: a logarithmic intensity variance (LIV) method and a complex-correlation-based method. Three-dimensional DOCT data were acquired with a 1.3 [Formula: see text]m swept-source OCT system and repeating raster scan protocols. In the normal kidney, the renal tubule appeared as a convoluted pipe-like structure in the DOCT projection image. Such pipe-like structures were not observed in the kidneys subjected to obstruction of the ureter for several days. Instead of any anatomical structures, a superficial high dynamics appearance was observed in the perirenal cortex region of the obstructed kidneys. These findings suggest that volumetric LIV can be used as a tool to investigate kidney function during kidney diseases.
Collapse
Affiliation(s)
- Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinichi Fukuda
- Laboratory of Advanced Vision Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Donny Lukmanto
- Laboratory of Advanced Vision Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Thi Hang Tran
- Laboratory of Advanced Vision Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Laboratory of Regenerative Medicine and Stem Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Ph.D. program in Human Biology, School of Integrative and Global Majors, Univeristy of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kosuke Okada
- Division of Medical Sciences, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Physics, Faculty of Science, Damietta University, 34517, New Damietta City, Damietta, Egypt
| | - Yiheng Lim
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
11
|
Hao S, Ren C, Wang F, Park K, Volmert BD, Aguirre A, Zhou C. Dual-modality imaging system for monitoring human heart organoids beating in vitro. OPTICS LETTERS 2023; 48:3929-3932. [PMID: 37527085 PMCID: PMC10707703 DOI: 10.1364/ol.493824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023]
Abstract
To reveal the three-dimensional microstructure and calcium dynamics of human heart organoids (hHOs), we developed a dual-modality imaging system combining the advantages of optical coherence tomography (OCT) and fluorescence microscopy. OCT provides high-resolution volumetric structural information, while fluorescence imaging indicates the electrophysiology of the hHOs' beating behavior. We verified that concurrent OCT motion mode (M-mode) and calcium imaging retrieved the same beating pattern from the heart organoids. We further applied dynamic contrast OCT (DyC-OCT) analysis to strengthen the verification and localize the beating clusters inside the hHOs. This imaging platform provides a powerful tool for studying and assessing hHOs in vitro, with potential applications in disease modeling and drug screening.
Collapse
Affiliation(s)
- Senyue Hao
- Department of Electrical & Systems Engineering, Washington University in Saint Louis, USA
| | - Chao Ren
- Program of Ph.D. in Imaging Science, Washington University in Saint Louis, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, USA
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in Saint Louis, USA
| | - Kibeom Park
- Department of Biomedical Engineering, Washington University in Saint Louis, USA
| | - Brett D. Volmert
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, USA
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, USA
| | - Chao Zhou
- Department of Electrical & Systems Engineering, Washington University in Saint Louis, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, USA
| |
Collapse
|