1
|
Fan TWM, Higashi RM, Lane AN. Metabolic Reprogramming in Human Cancer Patients and Patient-Derived Models. Cold Spring Harb Perspect Med 2025; 15:a041552. [PMID: 39009444 PMCID: PMC12047743 DOI: 10.1101/cshperspect.a041552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Stable isotope-resolved metabolomics delineates reprogrammed intersecting metabolic networks in human cancers. Knowledge gained from in vivo patient studies provides the "benchmark" for cancer models to recapitulate. It is particularly difficult to model patients' tumor microenvironment (TME) with its complex cell-cell/cell-matrix interactions, which shapes metabolic reprogramming crucial to cancer development/drug resistance. Patient-derived organotypic tissue cultures (PD-OTCs) represent a unique model that retains an individual patient's TME. PD-OTCs of non-small-cell lung cancer better recapitulated the in vivo metabolic reprogramming of patient tumors than the patient-derived tumor xenograft (PDTX), while enabling interrogation of immunometabolic response to modulators and TME-dependent resistance development. Patient-derived organoids (PDOs) are also good models for reconstituting TME-dependent metabolic reprogramming and for evaluating therapeutic responses. Single-cell based 'omics on combinations of PD-OTC and PDO models will afford an unprecedented understanding on TME dependence of human cancer metabolic reprogramming, which should translate into the identification of novel metabolic targets for regulating TME interactions and drug resistance.
Collapse
Affiliation(s)
- Teresa W-M Fan
- Center for Environmental and Systems Biochemistry; Markey Cancer Center; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry; Markey Cancer Center; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry; Markey Cancer Center; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| |
Collapse
|
2
|
Fan TWM, Yan J, Goncalves CFL, Islam JMM, Lin P, Kaddah MMY, Higashi RM, Lane AN, Wang X, Zhu C. Patient-derived organotypic tissue cultures as a platform to evaluate metabolic reprogramming in breast cancer patients. J Biol Chem 2025; 301:108495. [PMID: 40209948 PMCID: PMC12137166 DOI: 10.1016/j.jbc.2025.108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025] Open
Abstract
Patient-derived organotypic tissue cultures (PD-OTC) are unique models for probing cancer metabolism and therapeutic responses. They retain patient tissue architectures/microenvironments that are difficult to recapitulate while affording comparison of cancer (CA) versus matched noncancer (NC) tissue responses to treatments. We have developed a long-term culturing method for fresh and cryopreserved PD-OTC of breast cancer patients bearing invasive ductal carcinoma. Five PD-OTC came from patients with treatment-naïve primary ER+/PR+/HER2- tumors while one came from a patient with neoadjuvant therapy for locally metastatic ERlow/PR-/HER2- tumor. They all exhibited tissue outgrowth in 1 month with some CA OTC harboring isolatable organoids and fibroblasts. We interrogated reprogrammed metabolism in CA versus paired NC OTC with dual 2H7-glucose/13C5,15N2-Gln tracers coupled with stable isotope-resolved metabolomic analysis. We noted variable activation of glycolysis, cataplerotic/anaplerotic Krebs cycle including reductive carboxylation, the pentose phosphate pathway, riboneogenesis, gluconeogenesis, de novo and salvage synthesis of purine/pyrimidine nucleotides, and ADP-ribosylation in CA PD-OTC. Altered metabolic activities were in part accountable by expression changes in key enzymes measured by reverse phase protein array profiling. Notably, Gln-fueled gluconeogenesis products were preferentially diverted to support purine nucleotide synthesis. When blocking this novel process with an inhibitor of phosphoenolpyruvate carboxykinase (3-mercaptopicolinic acid), metastatic, ERlow/PR-/HER2- CA OTC displayed compromised cellularity, reduced outgrowth, and disrupted growth/survival-supporting metabolism but the matched NC OTC did not. Thus, our PD-OTC culturing method not only promoted understanding of actual patient's tumor metabolism to uncover viable metabolic targets but also enabled target testing and elucidation of therapeutic efficacy.
Collapse
Affiliation(s)
- Teresa W-M Fan
- Center for Environmental and Systems Biochemistry (CESB), Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA.
| | - Jing Yan
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Carlos Frederico L Goncalves
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Jahid M M Islam
- Center for Environmental and Systems Biochemistry (CESB), Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Penghui Lin
- Center for Environmental and Systems Biochemistry (CESB), Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Mohamed M Y Kaddah
- Center for Environmental and Systems Biochemistry (CESB), Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA; Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry (CESB), Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry (CESB), Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoqin Wang
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Caigang Zhu
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
3
|
Yan J, Goncalves CFL, Saha PS, Furdui CM, Zhu C. Optical imaging provides flow-cytometry-like single-cell level analysis of HIF-1 α-mediated metabolic changes in radioresistant head and neck squamous carcinoma cells. BIOPHOTONICS DISCOVERY 2025; 2:012702. [PMID: 39917319 PMCID: PMC11801402 DOI: 10.1117/1.bios.2.1.012702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Significance Radioresistance remains a significant problem for head and neck squamous cell carcinoma (HNSCC) patients. To mitigate this, the cellular and molecular pathways used by radioresistant HNSCC that drive recurrence must be studied. Aim We aim to demonstrate optical imaging strategies to provide flow cytometry-like single-cell level analysis of hypoxia-inducible factor 1-alpha (HIF-1α)-mediated metabolic changes in the radioresistant and radiosensitive HNSCC cells but in a more efficient, cost-effective, and non-destructive manner. Through both optical imaging and flow cytometry studies, we will reveal the role of radiation-induced HIF-1α overexpression and the following metabolic changes in the radioresistance development for HNSCC. Approach We optimized the use of two metabolic probes: 2-[N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) (to report glucose uptake) and Tetramethylrhodamine ethyl ester (TMRE) (to report mitochondrial membrane potential) with both a standard fluorescence microscope and a flow cytometry device, to report the changes in metabolism between radioresistant (rSCC-61) and radiosensitive (SCC-61) HNSCC cell lines under radiation stresses with or without HIF-1α inhibition. Results We found that the matched HNSCC cell lines had different baseline metabolic phenotypes, and their metabolism responded differently to radiation stress along with significantly enhanced HIF-1α expressions in the rSCC-61 cells. HIF-1α inhibition during the radiation treatment modulates the metabolic changes and radio-sensitizes the rSCC-61 cells. Through these studies, we demonstrated that a standard fluorescence microscope along with proper image processing methods can provide flow cytometry-like single-cell level analysis of HIF-1α-mediated metabolic changes in the radioresistant and radiosensitive HNSCC cells. Conclusions Our reported optical imaging strategies may enable one to study the role of metabolism reprogramming in cancer therapeutic resistance development at the single-cell level in a more efficient, cost-effective, and non-destructive manner. Our understanding of radiation resistance mechanisms using our imaging methods will offer opportunities to design targeted radiotherapy for improved treatment outcomes for HNSCC patients.
Collapse
Affiliation(s)
- Jing Yan
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | | | - Pranto Soumik Saha
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Cristina M. Furdui
- Wake Forest University, Department of Internal Medicine, Winston-Salem, North Carolina, United States
| | - Caigang Zhu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| |
Collapse
|
4
|
Lane AN, Higashi RM, Fan TWM. Challenges of Spatially Resolved Metabolism in Cancer Research. Metabolites 2024; 14:383. [PMID: 39057706 PMCID: PMC11278851 DOI: 10.3390/metabo14070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.
Collapse
Affiliation(s)
- Andrew N. Lane
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA; (R.M.H.); (T.W.-M.F.)
| | | | | |
Collapse
|
5
|
Saha PS, Yan J, Zhu C. Diffuse reflectance spectroscopy for optical characterizations of orthotopic head and neck cancer models in vivo. BIOMEDICAL OPTICS EXPRESS 2024; 15:4176-4189. [PMID: 39022549 PMCID: PMC11249676 DOI: 10.1364/boe.528608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
We demonstrated an easy-to-build, portable diffuse reflectance spectroscopy device along with a Monte Carlo inverse model to quantify tissue absorption and scattering-based parameters of orthotopic head and neck cancer models in vivo. Both tissue-mimicking phantom studies and animal studies were conducted to verify the optical spectroscopy system and Monte Carlo inverse model for the accurate extraction of tissue optical properties. For the first time, we reported the tissue absorption and scattering coefficients of mouse normal tongue tissues and tongue tumor tissues. Our in vivo animal studies showed reduced total hemoglobin concentration, lower tissue vascular oxygen saturation, and increased tissue scattering in the orthotopic tongue tumors compared to the normal tongue tissues. Our data also showed that mice tongue tumors with different sizes may have significantly different tissue absorption and scattering-based parameters. Small tongue tumors (volume was ∼60 mm3) had increased absorption coefficients, decreased reduced-scattering coefficients, and increased total hemoglobin concentrations compared to tiny tongue tumors (volume was ∼18 mm3). These results demonstrated the potential of diffuse reflectance spectroscopy to noninvasively evaluate tumor biology using orthotopic tongue cancer models for future head and neck cancer research.
Collapse
Affiliation(s)
- Pranto Soumik Saha
- Department of Biomedical Engineering, University of Kentucky
, Lexington, KY 40506, USA
| | - Jing Yan
- Department of Biomedical Engineering, University of Kentucky
, Lexington, KY 40506, USA
| | - Caigang Zhu
- Department of Biomedical Engineering, University of Kentucky
, Lexington, KY 40506, USA
| |
Collapse
|
6
|
Pickett MR, Chen YI, Kamra M, Kumar S, Kalkunte N, Sugerman GP, Varodom K, Rausch MK, Zoldan J, Yeh HC, Parekh SH. Assessing the impact of extracellular matrix fiber orientation on breast cancer cellular metabolism. Cancer Cell Int 2024; 24:199. [PMID: 38840117 PMCID: PMC11151503 DOI: 10.1186/s12935-024-03385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/25/2024] [Indexed: 06/07/2024] Open
Abstract
The extracellular matrix (ECM) is a dynamic and complex microenvironment that modulates cell behavior and cell fate. Changes in ECM composition and architecture have been correlated with development, differentiation, and disease progression in various pathologies, including breast cancer [1]. Studies have shown that aligned fibers drive a pro-metastatic microenvironment, promoting the transformation of mammary epithelial cells into invasive ductal carcinoma via the epithelial-to-mesenchymal transition (EMT) [2]. The impact of ECM orientation on breast cancer metabolism, however, is largely unknown. Here, we employ two non-invasive imaging techniques, fluorescence-lifetime imaging microscopy (FLIM) and intensity-based multiphoton microscopy, to assess the metabolic states of cancer cells cultured on ECM-mimicking nanofibers in a random and aligned orientation. By tracking the changes in the intrinsic fluorescence of nicotinamide adenine dinucleotide and flavin adenine dinucleotide, as well as expression levels of metastatic markers, we reveal how ECM fiber orientation alters cancer metabolism and EMT progression. Our study indicates that aligned cellular microenvironments play a key role in promoting metastatic phenotypes of breast cancer as evidenced by a more glycolytic metabolic signature on nanofiber scaffolds of aligned orientation compared to scaffolds of random orientation. This finding is particularly relevant for subsets of breast cancer marked by high levels of collagen remodeling (e.g. pregnancy associated breast cancer), and may serve as a platform for predicting clinical outcomes within these subsets [3-6].
Collapse
Affiliation(s)
- Madison R Pickett
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA.
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Mohini Kamra
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Sachin Kumar
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Nikhith Kalkunte
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Gabriella P Sugerman
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Kelsey Varodom
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Manuel K Rausch
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 78712, Austin, TX, USA
- Department of Mechanical Engineering, The University of Texas at Austin, 78712, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 78712, Austin, TX, USA
| | - Janet Zoldan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Hsin-Chin Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA
| | - Sapun H Parekh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA.
| |
Collapse
|