1
|
Wijesinghe RE, Kahatapitiya NS, Lee C, Han S, Kim S, Saleah SA, Seong D, Silva BN, Wijenayake U, Ravichandran NK, Jeon M, Kim J. Growing Trend to Adopt Speckle Variance Optical Coherence Tomography for Biological Tissue Assessments in Pre-Clinical Applications. MICROMACHINES 2024; 15:564. [PMID: 38793137 PMCID: PMC11122893 DOI: 10.3390/mi15050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Speckle patterns are a generic feature in coherent imaging techniques like optical coherence tomography (OCT). Although speckles are granular like noise texture, which degrades the image, they carry information that can be benefited by processing and thereby furnishing crucial information of sample structures, which can serve to provide significant important structural details of samples in in vivo longitudinal pre-clinical monitoring and assessments. Since the motions of tissue molecules are indicated through speckle patterns, speckle variance OCT (SV-OCT) can be well-utilized for quantitative assessments of speckle variance (SV) in biological tissues. SV-OCT has been acknowledged as a promising method for mapping microvasculature in transverse-directional blood vessels with high resolution in micrometers in both the transverse and depth directions. The fundamental scope of this article reviews the state-of-the-art and clinical benefits of SV-OCT to assess biological tissues for pre-clinical applications. In particular, focus on precise quantifications of in vivo vascular response, therapy assessments, and real-time temporal vascular effects of SV-OCT are primarily emphasized. Finally, SV-OCT-incorporating pre-clinical techniques with high potential are presented for future biomedical applications.
Collapse
Affiliation(s)
- Ruchire Eranga Wijesinghe
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka;
- Center for Excellence in Intelligent Informatics, Electronics & Transmission (CIET), Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Nipun Shantha Kahatapitiya
- Department of Computer Engineering, Faculty of Engineering, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.S.K.); (U.W.)
| | - Changho Lee
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School & Hwasun Hospital, 264, Seoyang-ro, Hwasun 58128, Republic of Korea
| | - Sangyeob Han
- ICT Convergence Research Center, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Shinheon Kim
- ICT Convergence Research Center, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Sm Abu Saleah
- ICT Convergence Research Center, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Daewoon Seong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Bhagya Nathali Silva
- Center for Excellence in Intelligent Informatics, Electronics & Transmission (CIET), Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
- Faculty of Computing, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Udaya Wijenayake
- Department of Computer Engineering, Faculty of Engineering, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.S.K.); (U.W.)
| | - Naresh Kumar Ravichandran
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Gong P, Heiss C, Sampson DM, Wang Q, Yuan Z, Sampson DD. Detection of localized pulsatile motion in cutaneous microcirculation by speckle decorrelation optical coherence tomography angiography. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200112R. [PMID: 32935499 PMCID: PMC7490763 DOI: 10.1117/1.jbo.25.9.095004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 05/21/2023]
Abstract
SIGNIFICANCE Pulsatility is a vital characteristic of the cardiovascular system. Characterization of the pulsatility pattern locally in the peripheral microvasculature is currently not readily available and would provide an additional source of information, which may prove important in understanding the pathophysiology of arterial stiffening, vascular ageing, and their linkage with cardiovascular disease development. AIM We aim to confirm the suitability of speckle decorrelation optical coherence tomography angiography (OCTA) under various noncontact/contact scanning protocols for the visualization of pulsatility patterns in vessel-free tissue and in the microvasculature of peripheral human skin. RESULTS Results from five healthy subjects show distinct pulsatile patterns both in vessel-free tissue with either noncontact or contact imaging and in individual microvessels with contact imaging. Respectively, these patterns are likely caused by the pulsatile pressure and pulsatile blood flow. The pulse rates show good agreement with those from pulse oximetry, confirming that the pulsatile signatures reflect pulsatile hemodynamics. CONCLUSIONS This study demonstrates the potential of speckle decorrelation OCTA for measuring localized peripheral cutaneous pulsatility and defines scanning protocols necessary to undertake such measurements. Noncontact imaging should be used for the study of pulsatility in vessel-free tissue and contact imaging with strong mechanical coupling in individual microvessels. Further studies of microcirculation based upon this method and protocols are warranted.
Collapse
Affiliation(s)
- Peijun Gong
- The University of Western Australia, Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic, and Computer Engineering, Perth, Western Australia, Australia
- Address all correspondence to Peijun Gong, E-mail:
| | - Christian Heiss
- The University of Surrey, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, Guildford, Surrey, United Kingdom
- Surrey and Sussex Healthcare NHS Trust, Redhill, United Kingdom
| | - Danuta M. Sampson
- The University of Surrey, Centre for Vision, Speech, and Signal Processing, Surrey Biophotonics, Guildford, Surrey, United Kingdom
- The University of Surrey, School of Biosciences and Medicine, Surrey Biophotonics, Guildford, Surrey, United Kingdom
| | - Qiang Wang
- The University of Western Australia, Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic, and Computer Engineering, Perth, Western Australia, Australia
| | - Zhihong Yuan
- The University of Western Australia, Optical+Biomedical Engineering Laboratory, Department of Electrical, Electronic, and Computer Engineering, Perth, Western Australia, Australia
| | - David D. Sampson
- The University of Surrey, School of Biosciences and Medicine, Surrey Biophotonics, Guildford, Surrey, United Kingdom
- The University of Surrey, Advanced Technology Institute, School of Physics, Surrey Biophotonics, Guildford, Surrey, United Kingdom
| |
Collapse
|
3
|
Zhao Y, Ma Y, Liu J, Yu Y, Wang Y, Ma Z. Phase unwrapping for Doppler spectral domain optical coherence tomography flow measurement. JOURNAL OF BIOPHOTONICS 2020; 13:e201960064. [PMID: 31670909 DOI: 10.1002/jbio.201960064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Doppler optical coherence tomography (OCT) offers additional flow velocity information, which extends the application of OCT. Phase wrapping is the inherent problem that limits measureable range of Doppler OCT. We propose a phase unwrapping method which is suitable for correcting phase in Doppler OCT images. Points (pixels) in flow region are divided into groups according to the radial distance. Points in the same group are supposed to have close velocity. Phase unwrapping algorithm begins at the boundary layer group and is performed sequentially toward the center. Using the proposed criterion, points in a group are separated into two categories, signal points and noise points. Wrapping rounds are determined for signal points phase unwrapping. Mean value of the corrected signal points replaces the noise points for noise reduction. The method is validated with capillary tube flow phantom and in vivo blood flow.
Collapse
Affiliation(s)
- Yuqian Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Yushu Ma
- School of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Jian Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Yao Yu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Yi Wang
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Zhenhe Ma
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
4
|
Elahi S, Gu S, Thrane L, Rollins AM, Jenkins MW. Complex regression Doppler optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-8. [PMID: 29704328 PMCID: PMC5920204 DOI: 10.1117/1.jbo.23.4.046009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/09/2018] [Indexed: 05/06/2023]
Abstract
We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (∼100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.
Collapse
Affiliation(s)
- Sahar Elahi
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio, United States
| | - Shi Gu
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Lars Thrane
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio, United States
| | - Andrew M. Rollins
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Michael W. Jenkins
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio, United States
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
- Address all correspondence to: Michael W. Jenkins, E-mail:
| |
Collapse
|
5
|
Tan B, Hosseinaee Z, Bizheva K. Dense concentric circle scanning protocol for measuring pulsatile retinal blood flow in rats with Doppler optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-4. [PMID: 29110446 DOI: 10.1117/1.jbo.22.11.110501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/16/2017] [Indexed: 05/22/2023]
Abstract
The variability in the spatial orientation of retinal blood vessels near the optic nerve head (ONH) results in imprecision of the measured Doppler angle and therefore the pulsatile blood flow (BF), when those parameters are evaluated using Doppler OCT imaging protocols based on dual-concentric circular scans. Here, we utilized a dense concentric circle scanning protocol and evaluated its precision for measuring pulsatile retinal BF in rats for different numbers of the circular scans. An spectral domain optical coherence tomography (SD-OCT) system operating in the 1060-nm spectral range with image acquisition rate of 47,000 A-scans/s was used to acquire concentric circular scans centered at the rat's ONH, with diameters ranging from 0.8 to 1.0 mm. A custom, automatic blood vessel segmentation algorithm was used to track the spatial orientation of the retinal blood vessels in three dimensions, evaluate the spatially dependent Doppler angle and calculate more accurately the axial BF for each major retinal blood vessel. Metrics such as retinal BF, pulsatility index, and resistance index were evaluated for each and all of the major retinal blood vessels. The performance of the proposed dense concentric circle scanning protocols was compared with that of the dual-circle scanning protocol. Results showed a 3.8±2.2 deg difference in the Doppler angle calculation between the two approaches, which resulted in ∼7% difference in the calculated retinal BF.
Collapse
Affiliation(s)
- Bingyao Tan
- University of Waterloo, Department of Physics and Astronomy, Waterloo, Ontario, Canada
| | - Zohreh Hosseinaee
- University of Waterloo, Department of System Design Engineering, Waterloo, Ontario, Canada
| | - Kostadinka Bizheva
- University of Waterloo, Department of Physics and Astronomy, Waterloo, Ontario, Canada
- University of Waterloo, Department of System Design Engineering, Waterloo, Ontario, Canada
- University of Waterloo, School of Optometry, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Karunamuni G, Sheehan MM, Doughman YQ, Gu S, Sun J, Li Y, Strainic JP, Rollins AM, Jenkins MW, Watanabe M. Supplementation with the Methyl Donor Betaine Prevents Congenital Defects Induced by Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2017; 41:1917-1927. [PMID: 28888041 DOI: 10.1111/acer.13495] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite decades of public education about dire consequences of prenatal alcohol exposure (PAE), drinking alcohol during pregnancy remains prevalent. As high as 40% of live-born infants exposed to alcohol during gestation and diagnosed with fetal alcohol syndrome have congenital heart defects that can be life-threatening. In animal models, the methyl donor betaine, found in foods such as wheat bran, quinoa, beets, and spinach, ameliorated neurobehavioral deficits associated with PAE, but effects on heart development are unknown. METHODS Previously, we modeled a binge drinking episode during the first trimester in avian embryos. Here, we investigated whether betaine could prevent adverse effects of alcohol on heart development. Embryos exposed to ethanol (EtOH) with and without an optimal dose of betaine (5 μM) were analyzed at late developmental stages. Cardiac morphology parameters were rapidly analyzed and quantified using optical coherence tomography. DNA methylation at early stages was detected by immunofluorescent staining for 5-methylcytosine in sections of embryos treated with EtOH or cotreated with betaine. RESULTS Compared to EtOH-exposed embryos, betaine-supplemented embryos had higher late-stage survival rates and fewer gross head and body defects than seen after alcohol exposure alone. Betaine also reduced the incidence of late-stage cardiac defects such as absent vessels, abnormal atrioventricular (AV) valves, and hypertrophic ventricles. Furthermore, betaine cotreatment brought measurements of great vessel diameters, interventricular septum thickness, and AV leaflet volumes in betaine-supplemented embryos close to control values. Early-stage 5-methycytosine staining revealed that DNA methylation levels were reduced by EtOH exposure and normalized by co-administration with betaine. CONCLUSIONS This is the first study demonstrating efficacy of the methyl donor betaine in alleviating cardiac defects associated with PAE. These findings highlight the therapeutic potential of low-concentration betaine doses in mitigating PAE-induced birth defects and have implications for prenatal nutrition policies, especially for women who may not be responsive to folate supplementation.
Collapse
Affiliation(s)
- Ganga Karunamuni
- Department of Pediatrics, Congenital Heart Collaborative, UH Rainbow Babies and Children's Hospital, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Megan M Sheehan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Yong Qiu Doughman
- Department of Pediatrics, Congenital Heart Collaborative, UH Rainbow Babies and Children's Hospital, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Jiayang Sun
- Department of Population and Quantitative Health Sciences, Center for Statistical Research, Computing and Collaboration, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Youjun Li
- Department of Population and Quantitative Health Sciences, Center for Statistical Research, Computing and Collaboration, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - James P Strainic
- Department of Pediatrics, Congenital Heart Collaborative, UH Rainbow Babies and Children's Hospital, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Michael W Jenkins
- Department of Pediatrics, Congenital Heart Collaborative, UH Rainbow Babies and Children's Hospital, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Michiko Watanabe
- Department of Pediatrics, Congenital Heart Collaborative, UH Rainbow Babies and Children's Hospital, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
7
|
de Boer JF, Leitgeb R, Wojtkowski M. Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:3248-3280. [PMID: 28717565 PMCID: PMC5508826 DOI: 10.1364/boe.8.003248] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/26/2017] [Accepted: 05/22/2017] [Indexed: 05/19/2023]
Abstract
Optical coherence tomography (OCT) has become one of the most successful optical technologies implemented in medicine and clinical practice mostly due to the possibility of non-invasive and non-contact imaging by detecting back-scattered light. OCT has gone through a tremendous development over the past 25 years. From its initial inception in 1991 [Science254, 1178 (1991)] it has become an indispensable medical imaging technology in ophthalmology. Also in fields like cardiology and gastro-enterology the technology is envisioned to become a standard of care. A key contributor to the success of OCT has been the sensitivity and speed advantage offered by Fourier domain OCT. In this review paper the development of FD-OCT will be revisited, providing a single comprehensive framework to derive the sensitivity advantage of both SD- and SS-OCT. We point out the key aspects of the physics and the technology that has enabled a more than 2 orders of magnitude increase in sensitivity, and as a consequence an increase in the imaging speed without loss of image quality. This speed increase provided a paradigm shift from point sampling to comprehensive 3D in vivo imaging, whose clinical impact is still actively explored by a large number of researchers worldwide.
Collapse
Affiliation(s)
- Johannes F. de Boer
- Department of Physics and Astronomy and LaserLaB Amsterdam, VU University, De Boelelaan 1105, 1081 HV Amsterdam, Department of Ophthalmology, VU Medical Center, Amsterdam, The Netherlands
- Authors are listed in alphabetical order and contributed equally
| | - Rainer Leitgeb
- Christian Doppler Laboratory OPTRAMED, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Authors are listed in alphabetical order and contributed equally
| | - Maciej Wojtkowski
- Physical Optics and Biophotonics Group, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224 Warsaw, Poland
- Authors are listed in alphabetical order and contributed equally
| |
Collapse
|
8
|
Ford SM, McPheeters MT, Wang YT, Ma P, Gu S, Strainic J, Snyder C, Rollins AM, Watanabe M, Jenkins MW. Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease. CONGENIT HEART DIS 2017; 12:322-331. [PMID: 28211263 PMCID: PMC5467887 DOI: 10.1111/chd.12443] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The relationship between changes in endocardial cushion and resultant congenital heart diseases (CHD) has yet to be established. It has been shown that increased regurgitant flow early in embryonic heart development leads to endocardial cushion defects, but it remains unclear how abnormal endocardial cushions during the looping stages might affect the fully septated heart. The goal of this study was to reproducibly alter blood flow in vivo and then quantify the resultant effects on morphology of endocardial cushions in the looping heart and on CHDs in the septated heart. METHODS Optical pacing was applied to create regurgitant flow in embryonic hearts, and optical coherence tomography (OCT) was utilized to quantify regurgitation and morphology. Embryonic quail hearts were optically paced at 3 Hz (180 bpm, well above intrinsic rate 60-110 bpm) at stage 13 of development (3-4 weeks human) for 5 min. Pacing fatigued the heart and led to at least 1 h of increased regurgitant flow. Resultant morphological changes were quantified with OCT imaging at stage 19 (cardiac looping-4-5 weeks human) or stage 35 (4 chambered heart-8 weeks human). RESULTS All paced embryos imaged at stage 19 displayed structural changes in cardiac cushions. The amount of regurgitant flow immediately after pacing was inversely correlated with cardiac cushion size 24-h post pacing (P value < .01). The embryos with the most regurgitant flow and smallest cushions after pacing had a decreased survival rate at 8 days (P < .05), indicating that those most severe endocardial cushion defects were lethal. Of the embryos that survived to stage 35, 17/18 exhibited CHDs including valve defects, ventricular septal defects, hypoplastic ventricles, and common AV canal. CONCLUSION The data illustrate a strong inverse relationship in which regurgitant flow precedes abnormal and smaller cardiac cushions, resulting in the development of CHDs.
Collapse
Affiliation(s)
- Stephanie M Ford
- Rainbow Babies and Children's Hospital Division of Neonatology, University Hospitals, Cleveland, Ohio, USA
| | - Matthew T McPheeters
- Department of Pediatric Cardiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yves T Wang
- Case Western Reserve University Department of Biomedical Engineering, Cleveland, Ohio, USA
| | - Pei Ma
- Case Western Reserve University Department of Biomedical Engineering, Cleveland, Ohio, USA
| | - Shi Gu
- Case Western Reserve University Department of Biomedical Engineering, Cleveland, Ohio, USA
| | - James Strainic
- Rainbow Babies and Children's Hospital Division of Pediatric Cardiology, University Hospitals, Cleveland, Ohio, USA
| | - Christopher Snyder
- Rainbow Babies and Children's Hospital Division of Pediatric Cardiology, University Hospitals, Cleveland, Ohio, USA
| | - Andrew M Rollins
- Case Western Reserve University Department of Biomedical Engineering, Cleveland, Ohio, USA
| | - Michiko Watanabe
- Department of Pediatric Cardiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael W Jenkins
- Department of Pediatric Cardiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Peterson LM, Gu S, Karunamuni G, Jenkins MW, Watanabe M, Rollins AM. Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1823-1837. [PMID: 28663868 PMCID: PMC5480583 DOI: 10.1364/boe.8.001823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 05/19/2023]
Abstract
The great arteries develop from symmetrical aortic arch arteries which are extensively remodeled. These events are vulnerable to perturbations. Hemodynamic forces have a significant role in this remodeling. In this study, optical coherence tomography (OCT) visualized live avian embryos for staging and measuring pharyngeal arch morphology. Measurements acquired with our orientation-independent, dual-angle Doppler OCT technique revealed that ethanol exposure leads to higher absolute blood flow, shear stress, and retrograde flow. Ethanol-exposed embryos had smaller cardiac neural crest (CNC) derived pharyngeal arch mesenchyme and fewer migrating CNC-derived cells. These differences in forces and CNC cell numbers could explain the abnormal aortic arch remodeling.
Collapse
Affiliation(s)
- Lindsy M. Peterson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Ganga Karunamuni
- Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Michiko Watanabe
- Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
10
|
You J, Li A, Du C, Pan Y. Volumetric Doppler angle correction for ultrahigh-resolution optical coherence Doppler tomography. APPLIED PHYSICS LETTERS 2017; 110:011102. [PMID: 28104922 PMCID: PMC5218966 DOI: 10.1063/1.4973367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/12/2016] [Indexed: 05/14/2023]
Abstract
Ultrahigh-resolution optical coherence Doppler tomography (μODT) demonstrates great potential for quantitative blood flow imaging owing to its large field of view and capillary resolution. However, μODT only detects the axial flow velocity and requires Doppler angle correction to retrieve the absolute velocity. Although methods for Doppler angle tracking of single or few large vessels have been reported, a method that enables angle correction of the entire 3D microvascular networks remains a challenge. Here, we present a method based on eigenvalue analysis of 3D Hessian matrix to retrieve the orientation of each tubular vessel. As the algorithm is voxel based, it is suitable for effective tracking of Doppler angle matrix and restoring the absolute flow over the 3D vascular flow networks. We present results on simulation and flow phantom studies to show its efficacy for accurate 3D angle tracking and absolute flow correction. Then, we perform an in vivo validation study on mouse micro-circulatory cerebral blood flow (CBF) networks, which clearly demonstrates the capability of this method for tracking the Doppler angle matrix of the highly complex 3D CBF networks.
Collapse
Affiliation(s)
- Jiang You
- Department of Biomedical Engineering, Stony Brook University , Stony Brook, New York 11794, USA
| | - Ang Li
- Department of Biomedical Engineering, Stony Brook University , Stony Brook, New York 11794, USA
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University , Stony Brook, New York 11794, USA
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University , Stony Brook, New York 11794, USA
| |
Collapse
|
11
|
Wartak A, Haindl R, Trasischker W, Baumann B, Pircher M, Hitzenberger CK. Active-passive path-length encoded (APPLE) Doppler OCT. BIOMEDICAL OPTICS EXPRESS 2016; 7:5233-5251. [PMID: 28018739 PMCID: PMC5175566 DOI: 10.1364/boe.7.005233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/10/2016] [Accepted: 11/20/2016] [Indexed: 05/23/2023]
Abstract
We present a novel active-passive path-length encoded (APPLE) swept source Doppler optical coherence tomography (DOCT) approach, enabling three-dimensional velocity vector reconstruction of moving particles without prior knowledge of the orientation of motion. The developed APPLE DOCT setup allows for non-invasive blood flow measurements in vivo and was primarily designed for quantitative human ocular blood flow investigations. The system's performance was demonstrated by in vitro flow phantom as well as in vivo retinal vessel bifurcation measurements. Furthermore, total retinal blood flow - a biomarker aiding in diagnosis and monitoring of major ocular diseases such as glaucoma, diabetic retinopathy or central/branch retinal vein occlusion - was determined in the eyes of healthy human volunteers.
Collapse
|
12
|
Haindl R, Trasischker W, Wartak A, Baumann B, Pircher M, Hitzenberger CK. Total retinal blood flow measurement by three beam Doppler optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:287-301. [PMID: 26977340 PMCID: PMC4771449 DOI: 10.1364/boe.7.000287] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 05/04/2023]
Abstract
We present measurements of total retinal blood flow in healthy volunteers using a three beam Doppler optical coherence tomography (D-OCT) technique. This technology has the advantage of a precise determination of the flow vector without the use of any a-priori information on the vessel geometry. Circular D-OCT scans around the optic disc were recorded and venous as well as arterial total blood flow was determined and compared for each subject. The reproducibility of the method was assessed in 6 subjects by repeated measurements. Only small deviations of around 6% between the measurements were found which indicates the high precision of the proposed method.
Collapse
Affiliation(s)
- Richard Haindl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria;
| | - Wolfgang Trasischker
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria; Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA
| | - Andreas Wartak
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | | |
Collapse
|
13
|
Yin B, Dwelle J, Wang B, Wang T, Feldman MD, Rylander HG, Milner TE. Fourier optics analysis of phase-mask-based path-length-multiplexed optical coherence tomography. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2015; 32:2169-77. [PMID: 26560931 DOI: 10.1364/josaa.32.002169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Optical coherence tomography (OCT) is an imaging technique that constructs a depth-resolved image by measuring the optical path-length difference between broadband light backscattered from a sample and a reference surface. For many OCT sample arm optical configurations, sample illumination and backscattered light detection share a common path. When a phase mask is placed in the sample path, features in the detected signal are observed, which suggests that an analysis of a generic common path OCT imaging system is warranted. In this study, we present a Fourier optics analysis using a Fresnel diffraction approximation of an OCT system with a path-length-multiplexing element (PME) inserted in the sample arm optics. The analysis may be generalized for most phase-mask-based OCT systems. A radial-angle-diverse PME is analyzed in detail, and the point spread function, coherent transfer function, sensitivity of backscattering angular diversity detection, and signal formation in terms of sample spatial frequency are simulated and discussed. The analysis reveals important imaging features and application limitations of OCT imaging systems with a phase mask in the sample path optics.
Collapse
|
14
|
Karunamuni G, Gu S, Doughman YQ, Noonan AI, Rollins AM, Jenkins MW, Watanabe M. Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure. Dev Dyn 2015; 244:607-18. [PMID: 25546089 DOI: 10.1002/dvdy.24246] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The most commonly used method to analyze congenital heart defects involves serial sectioning and histology. However, this is often a time-consuming process where the quantification of cardiac defects can be difficult due to problems with accurate section registration. Here we demonstrate the advantages of using optical coherence tomography, a comparatively new and rising technology, to phenotype avian embryo hearts in a model of fetal alcohol syndrome where a binge-like quantity of alcohol/ethanol was introduced at gastrulation. RESULTS The rapid, consistent imaging protocols allowed for the immediate identification of cardiac anomalies, including ventricular septal defects and misaligned/missing vessels. Interventricular septum thicknesses and vessel diameters for three of the five outflow arteries were also significantly reduced. Outflow and atrioventricular valves were segmented using image processing software and had significantly reduced volumes compared to controls. This is the first study to our knowledge that has 3D reconstructed the late-stage cardiac valves in precise detail to examine their morphology and dimensions. CONCLUSIONS We believe, therefore, that optical coherence tomography, with its ability to rapidly image and quantify tiny embryonic structures in high resolution, will serve as an excellent and cost-effective preliminary screening tool for developmental biologists working with a variety of experimental/disease models.
Collapse
Affiliation(s)
- Ganga Karunamuni
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | | | | | | | | | | | | |
Collapse
|
15
|
You J, Du C, Volkow ND, Pan Y. Optical coherence Doppler tomography for quantitative cerebral blood flow imaging. BIOMEDICAL OPTICS EXPRESS 2014; 5:3217-30. [PMID: 25401033 PMCID: PMC4230874 DOI: 10.1364/boe.5.003217] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/28/2014] [Accepted: 08/04/2014] [Indexed: 05/03/2023]
Abstract
Optical coherence Doppler tomography (ODT) is a promising neurotechnique that permits 3D imaging of the cerebral blood flow (CBF) network; however, quantitative CBF velocity (CBFv) imaging remains challenging. Here we present a simple phase summation method to enhance slow capillary flow detection sensitivity without sacrificing dynamic range for fast flow and vessel tracking to improve angle correction for absolute CBFv quantification. Flow phantom validation indicated that the CBFv quantification accuracy increased from 15% to 91% and the coefficient of variation (CV) decreased 9.3-fold; in vivo mouse brain validation showed that CV decreased 4.4-/10.8- fold for venular/arteriolar flows. ODT was able to identify cocaine-elicited microischemia and quantify CBFv disruption in branch vessels and capillaries that otherwise would have not been possible.
Collapse
Affiliation(s)
- Jiang You
- Department of Biomedical Engineering Stony Brook University, Stony Brook, NY 11794, USA
| | - Congwu Du
- Department of Biomedical Engineering Stony Brook University, Stony Brook, NY 11794, USA
| | - Nora D. Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yingtian Pan
- Department of Biomedical Engineering Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|