1
|
Optical Modalities for Research, Diagnosis, and Treatment of Stroke and the Consequent Brain Injuries. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stroke is the second most common cause of death and third most common cause of disability worldwide. Therefore, it is an important disease from a medical standpoint. For this reason, various studies have developed diagnostic and therapeutic techniques for stroke. Among them, developments and applications of optical modalities are being extensively studied. In this article, we explored three important optical modalities for research, diagnostic, and therapeutics for stroke and the brain injuries related to it: (1) photochemical thrombosis to investigate stroke animal models; (2) optical imaging techniques for in vivo preclinical studies on stroke; and (3) optical neurostimulation based therapy for stroke. We believe that an exploration and an analysis of previous studies will help us proceed from research to clinical applications of optical modalities for research, diagnosis, and treatment of stroke.
Collapse
|
2
|
Influence of Acupuncture on Microcirculation Perfusion of Pericardium Meridian and Heart in Acute Myocardial Ischemia Model Rats. Chin J Integr Med 2021; 28:69-75. [PMID: 34816366 DOI: 10.1007/s11655-021-3294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2020] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To observe the influence of acupuncture on microcirculation perfusion of the pericardium meridian and heart in acute myocardial ischemia (AMI) rats and evaluate whether acupuncture can simultaneously affect the meridians and corresponding viscera. Additionally, acupoints at different meridians were compared and whether they exert the same effects was discussed. METHODS Totally 32 Sprague-Dawley rats were subjected to left anterior descending (LAD) ligation to develop an AMI model. Rats were divided into 4 groups, including AMI, acupuncture Neiguan (PC 6), Lieque (LU 7) and Qiansanli (LI 10) groups (n=8). Eight rats received only thoracotomy (sham-operated group). The rats in the acupuncture groups received manual acupuncture at PC 6, LU 7 and LI 10 acupoints for 15 min, respectively. The microcirculation perfusion of pericardium meridian and heart was monitored by laser speckle perfusion imager (LSPI) before, during and after acupuncture manipulation for 15 min. Subsequently, the perfusion unit (PU) was calculated and analyzed by PSI System. RESULTS After LAD, compared to pre-acupuncture stage, the heart microcirculation perfusion (HMP) in the AMI group decreased continuously at during-acupuncture (P>0.05) and post-acupuncture stages (P<0.05), and the pericardium meridian microcirculation perfusion (PMP) showed no significant differences at 3 stages (P>0.05). Compared to pre-acupuncture stage, the PMP and HMP in PC 6 group significantly increased during acupuncture manipulation (both P<0.05), and PMP decreased obviously after acupuncture (P<0.05). The PMP in the LU 7 and LI 10 groups were slightly elevated (both P>0.05); however, they were significantly reduced after acupuncture manipulation (both P<0.05). Additionally, HMP of LI 10 group was decreased significantly during acupuncture, especially compared to pre-acupuncture stage (P<0.05). CONCLUSIONS Acupuncture at PC 6 obviously increased the PMP and HMP in AMI rats, and the effects were superior to at LU 7 and LI 10 acupoints. It was further confirmed that acupuncture promoted qi and blood circulation, indicating that acupoint specificity exists and features a meridian-propagated effect.
Collapse
|
3
|
Kim Y, Lee YB, Bae SK, Oh SS, Choi JR. Development of a photochemical thrombosis investigation system to obtain a rabbit ischemic stroke model. Sci Rep 2021; 11:5787. [PMID: 33707580 PMCID: PMC7970995 DOI: 10.1038/s41598-021-85348-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 11/15/2022] Open
Abstract
Photochemical thrombosis is a method for the induction of ischemic stroke in the cerebral cortex. It can generate localized ischemic infarcts in the desired region; therefore, it has been actively employed in establishing an ischemic stroke animal model and in vivo assays of diagnostic and therapeutic techniques for stroke. To establish a rabbit ischemic stroke model and overcome the shortcoming of previous studies that were difficult to build a standardized photothrombotic rabbit model, we developed a photochemical thrombosis induction system that can produce consistent brain damage on a specific area. To verify the generation of photothrombotic brain damage using the system, longitudinal magnetic resonance imaging, 2,3,5-triphenyltetrazolium chloride staining, and histological staining were applied. These analytical methods have a high correlation for ischemic infarction and are appropriate for analyzing photothrombotic brain damage in the rabbit brain. The results indicated that the photothrombosis induction system has a main advantage of being accurately controlled a targeted region of photothrombosis and can produce cerebral hemisphere lesions on the target region of the rabbit brain. In conjugation with brain atlas, it can induce photochemical ischemic stroke locally in the part of the brain that is responsible for a particular brain function and the system can be used to develop animal models with degraded specific functions. Also, the photochemical thrombosis induction system and a standardized rabbit ischemic stroke model that uses this system have the potential to be used for verifications of biomedical techniques for ischemic stroke at a preclinical stage in parallel with further performance improvements.
Collapse
Affiliation(s)
- Yoonhee Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, Republic of Korea
| | - Yoon Bum Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, Republic of Korea
| | - Seung Kuk Bae
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu, 41566, Korea
| | - Sung Suk Oh
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, Republic of Korea.
| | - Jong-Ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, Republic of Korea.
| |
Collapse
|
4
|
Ma J, Ma Y, Shuaib A, Winship IR. Impaired Collateral Flow in Pial Arterioles of Aged Rats During Ischemic Stroke. Transl Stroke Res 2020; 11:243-253. [PMID: 31203565 PMCID: PMC7067739 DOI: 10.1007/s12975-019-00710-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/02/2019] [Accepted: 06/05/2019] [Indexed: 02/05/2023]
Abstract
Cerebral collateral circulation and age are critical factors in determining outcome from acute ischemic stroke. Aging may lead to rarefaction of cerebral collaterals, and thereby accelerate ischemic injury by reducing penumbral blood flow. Dynamic changes in pial collaterals after onset of cerebral ischemia may vary with age but have not been extensively studied. Here, laser speckle contrast imaging (LSCI) and two-photon laser scanning microscopy (TPLSM) were combined to monitor cerebral pial collaterals between the anterior cerebral artery (ACA) and the middle cerebral artery (MCA) in young adult and aged male Sprague Dawley rats during distal middle cerebral artery occlusion (dMCAo). Histological analysis showed that aged rats had significantly greater volumes of ischemic damage than young rats. LSCI showed that cerebral collateral perfusion declined over time after stroke in aged and young rats, and that this decline was significantly greater in aged rats. TPLSM demonstrated that pial arterioles narrowed faster after dMCAo in aged rats compared to young adult rats. Notably, while arteriole vessel narrowing was comparable 4.5 h after ischemic onset in aged and young adult rats, red blood cell velocity was stable in young adults but declined over time in aged rats. Overall, red blood cell flux through pial arterioles was significantly reduced at all time-points after 90 min post-dMCAo in aged rats relative to young adult rats. Thus, collateral failure is more severe in aged rats with significantly impaired pial collateral dynamics (reduced diameter, red blood cell velocity, and red blood cell flux) relative to young adult rats.
Collapse
Affiliation(s)
- Junqiang Ma
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, 12-127 Clinical Sciences Building, Edmonton, AB, T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yonglie Ma
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, 12-127 Clinical Sciences Building, Edmonton, AB, T6G 2R3, Canada
| | - Ashfaq Shuaib
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, 12-127 Clinical Sciences Building, Edmonton, AB, T6G 2R3, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Yang S, Liu K, Ding H, Gao H, Zheng X, Ding Z, Xu K, Li P. Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model. J Cereb Blood Flow Metab 2019; 39. [PMID: 29521548 PMCID: PMC6668510 DOI: 10.1177/0271678x18762636] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A thorough understanding of the spatiotemporal dynamics of blood supply and tissue viability is of great importance in stroke researches. In the current study, vascular and cellular responses to focal ischemia were monitored with optical coherence tomography on chronic rat photothrombotic stroke model. The 3D mapping of blood perfusion and cellular scattering were achieved by analyzing the temporal dynamics and depth attenuation of intrinsic backscattered light respectively. Optical coherence tomography revealed that vessels of different types presented various spatial and temporal dynamics during the photothrombotic occlusion and the later recovery period. The large distal middle cerebral arteries presented a spontaneous recanalization and the small pial microvessels presented a reperfusion along with newly appeared vessels from the peripheral into the core area. The cortical capillary perfusion presented a weak recovery. Compared to the male group, the female rats showed a faster vascular recovery after photothrombotic. Moreover, the dynamic changes of the cellular scattering signal showed a high spatial and temporal correlation with the cortical capillary perfusion. Combined with well-designed photothrombotic stroke model and chronic optical window, optical coherence tomography imaging offers a unique approach to improve the understanding of stroke procedure and evaluate the treatment outcomes.
Collapse
Affiliation(s)
- Shanshan Yang
- 1 State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kezhou Liu
- 2 Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China.,3 College of Life Information Science and Instruments Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Huijie Ding
- 3 College of Life Information Science and Instruments Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Huan Gao
- 4 Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China
| | - Xiaoxiang Zheng
- 2 Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China.,4 Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China.,5 Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Zhihua Ding
- 1 State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kedi Xu
- 2 Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China.,4 Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China.,5 Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Peng Li
- 1 State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Photothrombotic Stroke as a Model of Ischemic Stroke. Transl Stroke Res 2017; 9:437-451. [DOI: 10.1007/s12975-017-0593-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
|
7
|
Reichenbach ZW, Li H, Ward SJ, Tuma RF. The CB1 antagonist, SR141716A, is protective in permanent photothrombotic cerebral ischemia. Neurosci Lett 2016; 630:9-15. [PMID: 27453059 DOI: 10.1016/j.neulet.2016.07.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 01/24/2023]
Abstract
Modulation of the endocannabinoid system has been shown to have a significant impact on outcomes in animal models of stroke. We have previously reported a protective effect of the CB1 antagonist, SR141716A, in a transient reperfusion mouse model of cerebral ischemia. This protective effect was in part mediated by activation of the 5HT1A receptor. Here we have examined its effect in a mouse model of permanent ischemia induced by photoinjury. The CB1 antagonist was found to be protective in this model. As was the case following transient ischemia reperfusion, SR141716A (5mg/kg) resulted in smaller infarct fractions and stroke volumes when utilized both as a pretreatment and as a post-treatment. In contrast to the effect in a transient ischemia model, the pretreatment effect did not depend on the 5HT1A receptor. Neurological function correlated favorably to the reduction in stroke size when SR141716A was given as a pretreatment. With the incidence of stroke predicted to rise in parallel with an ever aging population, understanding mechanisms underlying ischemia and therapeutics remains a paramount goal of research.
Collapse
Affiliation(s)
- Zachary Wilmer Reichenbach
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Medical Education and Research Building, 8th floor Philadelphia, PA, 19140, United States.
| | - Hongbo Li
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Medical Education and Research Building, 8th floor Philadelphia, PA, 19140, United States.
| | - Sara Jane Ward
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Medical Education and Research Building, 8th floor Philadelphia, PA, 19140, United States.
| | - Ronald F Tuma
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Medical Education and Research Building, 8th floor Philadelphia, PA, 19140, United States.
| |
Collapse
|
8
|
Postnov DD, Tuchin VV, Sosnovtseva O. Estimation of vessel diameter and blood flow dynamics from laser speckle images. BIOMEDICAL OPTICS EXPRESS 2016; 7:2759-68. [PMID: 27446704 PMCID: PMC4948628 DOI: 10.1364/boe.7.002759] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 05/02/2023]
Abstract
Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical masking of a vessel position and measurements of it's diameter from laser speckle images. This approach demonstrates high reliability and stability.
Collapse
Affiliation(s)
- Dmitry D. Postnov
- Department of Biomedical Sciences, Copenhagen University, Blegdamsvej 3, 2200 Copenhagen N,
Denmark
| | - Valery V. Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov National Research State University, Astrakhanskaya Str. 83, 410012 Saratov,
Russia
- Institute of Precision Mechanics and Control RAS, Rabochaya str. 24, 410028 Saratov,
Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk National Research State University, 634050 Tomsk,
Russia
| | - Olga Sosnovtseva
- Department of Biomedical Sciences, Copenhagen University, Blegdamsvej 3, 2200 Copenhagen N,
Denmark
| |
Collapse
|
9
|
Edelman BJ, Johnson N, Sohrabpour A, Tong S, Thakor N, He B. Systems Neuroengineering: Understanding and Interacting with the Brain. ENGINEERING (BEIJING, CHINA) 2015; 1:292-308. [PMID: 34336364 PMCID: PMC8323844 DOI: 10.15302/j-eng-2015078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this paper, we review the current state-of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate coordination of many processes that can be attributed to a variety of brain regions. On the surface, many of these functions can appear to be controlled by specific anatomical structures; however, in reality, numerous dynamic networks within the brain contribute to its function through an interconnected web of neuronal and synaptic pathways. The brain, in its healthy or pathological state, can therefore be best understood by taking a systems-level approach. While numerous neuroengineering technologies exist, we focus here on three major thrusts in the field of systems neuroengineering: neuroimaging, neural interfacing, and neuromodulation. Neuroimaging enables us to delineate the structural and functional organization of the brain, which is key in understanding how the neural system functions in both normal and disease states. Based on such knowledge, devices can be used either to communicate with the neural system, as in neural interface systems, or to modulate brain activity, as in neuromodulation systems. The consideration of these three fields is key to the development and application of neuro-devices. Feedback-based neuro-devices require the ability to sense neural activity (via a neuroimaging modality) through a neural interface (invasive or noninvasive) and ultimately to select a set of stimulation parameters in order to alter neural function via a neuromodulation modality. Systems neuroengineering refers to the use of engineering tools and technologies to image, decode, and modulate the brain in order to comprehend its functions and to repair its dysfunction. Interactions between these fields will help to shape the future of systems neuroengineering-to develop neurotechniques for enhancing the understanding of whole-brain function and dysfunction, and the management of neurological and mental disorders.
Collapse
Affiliation(s)
- Bradley J. Edelman
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nessa Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Abbas Sohrabpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Nitish Thakor
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- SINAPSE Institute, National University of Singapore, Singapore
| | - Bin He
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|