1
|
Liu YJ, Houldsworth J, Emmadi R, Dyer L, Wolff DJ. Assessing Genomic Copy Number Alterations as Best Practice for Renal Cell Neoplasia: An Evidence-Based Review from the Cancer Genomics Consortium Workgroup. Cancer Genet 2020; 244:40-54. [PMID: 32434132 DOI: 10.1016/j.cancergen.2020.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/05/2023]
Abstract
Renal cell neoplasia are heterogeneous with diverse histology, genetic alterations, and clinical behavior that are diagnosed mostly on morphologic features. The Renal Cell Neoplasia Workgroup of the Cancer Genomics Consortium systematically evaluated peer-reviewed literature on genomic studies of renal cell carcinoma (RCC), including clear cell RCC, papillary RCC, chromophobe RCC, and the translocation RCC involving TFE3, TFEB and MITF rearrangements, as well as benign oncocytoma, which together comprise about 95% of all renal cell neoplasia. The Workgroup curated recurrent copy number alterations (CNAs), copy-neutral loss-of-heterozygosity (cnLOH), rearrangements, and mutations, found in each subtype and assigned clinical relevance according to established criteria. In clear cell RCC, loss of 3p has a disease-initiating role and most likely also in progression with mutations detected in VHL and other genes mapped to this arm, and loss of 9p and/or 14q has well-substantiated prognostic utility. Gain of chromosomes 7 and 17 are hallmark CNAs of papillary RCC, but patterns of other CNAs as detected by chromosomal microarray analysis (CMA) afford sub-classification into Type 1 and 2 with prognostic value, and for further sub-stratification of Type 2. Inherent chromosome loss in chromophobe RCC as detected by CMA is useful for distinguishing the eosinophilic variant from benign oncocytoma which in contrast exhibits few CNAs or rearranged CCND1, but share mitochondrial DNA mutations. In morphologically atypical RCCs, rearrangement of TFE3 and TFEB should be considered in the differential diagnosis, portending an aggressive RCC subtype. Overall, this evidence-based review provides a validated role for assessment of CNAs in renal cell neoplasia in the clinical setting to assist in renal cell neoplasm diagnosis and sub-classification within subtypes that is integral to the management of patients, from small incidentally found renal masses to larger surgically resected specimens, and simultaneously identify the presence of key alterations portending outcome in malignant RCC subtypes.
Collapse
Affiliation(s)
- Yajuan J Liu
- Departments of Pathology and Laboratory Medicine, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195.
| | - Jane Houldsworth
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, The Mount Sinai Health System, 1 Gustave Levy Place, New York, NY 10029.
| | - Rajyasree Emmadi
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612
| | - Lisa Dyer
- Department of Pediatrics, Division of Human Genetics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4006, Cincinnati, OH 45229-3039
| | - Daynna J Wolff
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, MSC 908, Charleston, SC 29425
| |
Collapse
|
2
|
Song S, Xu J, Wang R. Flexible wide-field optical micro-angiography based on Fourier-domain multiplexed dual-beam swept source optical coherence tomography. JOURNAL OF BIOPHOTONICS 2018; 11:10.1002/jbio.201700203. [PMID: 28941235 PMCID: PMC5839934 DOI: 10.1002/jbio.201700203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 05/19/2023]
Abstract
Wide-field optical coherence tomography angiography (OCTA) is gaining interest in clinical imaging applications. In this pursuit, it is challenging to maintain the imaging resolution and sensitivity throughout the wide field of view (FoV). Here, we propose a novel method/system of dual-beam arrangement and Fourier-domain multiplexing to achieve wide-field OCTA when imaging the uneven surface samples. The proposed system provides 2 separate FoVs, with flexibility that the imaging area, focus of the imaging beam and imaging depth range can be individually adjusted for each FoV, leading to either (1) increased system imaging FoV or (2) capability of targeting 2 regions of interests that locate at depths with large difference between each other. We demonstrate this novel method by employing 100 kHz laser source in a swept source OCTA to achieve an effective 200 kHz sweeping rate, covering a 22 × 22 mm FoV. The results are verified by a SS-OCTA system employing a 200 kHz laser source, together with the experimental demonstrations when imaging whole brain vasculature in rodent models and skin blood perfusion in human fingers, show-casing the capability of proposed system to image live large samples with complex surface topography.
Collapse
Affiliation(s)
- Shaozhen Song
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Jingjiang Xu
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Ruikang Wang
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
3
|
Huang Y, Badar M, Nitkowski A, Weinroth A, Tansu N, Zhou C. Wide-field high-speed space-division multiplexing optical coherence tomography using an integrated photonic device. BIOMEDICAL OPTICS EXPRESS 2017; 8:3856-3867. [PMID: 28856055 PMCID: PMC5560846 DOI: 10.1364/boe.8.003856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 05/15/2023]
Abstract
Space-division multiplexing optical coherence tomography (SDM-OCT) is a recently developed parallel OCT imaging method in order to achieve multi-fold speed improvement. However, the assembly of fiber optics components used in the first prototype system was labor-intensive and susceptible to errors. Here, we demonstrate a high-speed SDM-OCT system using an integrated photonic chip that can be reliably manufactured with high precisions and low per-unit cost. A three-layer cascade of 1 × 2 splitters was integrated in the photonic chip to split the incident light into 8 parallel imaging channels with ~3.7 mm optical delay in air between each channel. High-speed imaging (~1s/volume) of porcine eyes ex vivo and wide-field imaging (~18.0 × 14.3 mm2) of human fingers in vivo were demonstrated with the chip-based SDM-OCT system.
Collapse
Affiliation(s)
- Yongyang Huang
- Department of Electrical and Computer Engineering, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
- Center for Photonics and Nanoelectronics, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
| | - Mudabbir Badar
- Department of Electrical and Computer Engineering, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
- Center for Photonics and Nanoelectronics, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
| | - Arthur Nitkowski
- Tornado Spectral Systems, Inc., 555 Richmond Street West, Suite 402, Toronto, ON, M5V 3(B)1, Canada
| | - Aaron Weinroth
- Tornado Spectral Systems, Inc., 555 Richmond Street West, Suite 402, Toronto, ON, M5V 3(B)1, Canada
| | - Nelson Tansu
- Department of Electrical and Computer Engineering, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
- Center for Photonics and Nanoelectronics, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
- Center for Photonics and Nanoelectronics, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
4
|
Klein T, Huber R. High-speed OCT light sources and systems [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:828-859. [PMID: 28270988 PMCID: PMC5330584 DOI: 10.1364/boe.8.000828] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 05/18/2023]
Abstract
Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems.
Collapse
Affiliation(s)
- Thomas Klein
- Optores GmbH, Gollierstr. 70, 80339 Munich, Germany
| | - Robert Huber
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| |
Collapse
|
5
|
Men J, Huang Y, Solanki J, Zeng X, Alex A, Jerwick J, Zhang Z, Tanzi RE, Li A, Zhou C. Optical Coherence Tomography for Brain Imaging and Developmental Biology. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6803213. [PMID: 27721647 PMCID: PMC5049888 DOI: 10.1109/jstqe.2015.2513667] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) is a promising research tool for brain imaging and developmental biology. Serving as a three-dimensional optical biopsy technique, OCT provides volumetric reconstruction of brain tissues and embryonic structures with micrometer resolution and video rate imaging speed. Functional OCT enables label-free monitoring of hemodynamic and metabolic changes in the brain in vitro and in vivo in animal models. Due to its non-invasiveness nature, OCT enables longitudinal imaging of developing specimens in vivo without potential damage from surgical operation, tissue fixation and processing, and staining with exogenous contrast agents. In this paper, various OCT applications in brain imaging and developmental biology are reviewed, with a particular focus on imaging heart development. In addition, we report findings on the effects of a circadian gene (Clock) and high-fat-diet on heart development in Drosophila melanogaster. These findings contribute to our understanding of the fundamental mechanisms connecting circadian genes and obesity to heart development and cardiac diseases.
Collapse
Affiliation(s)
- Jing Men
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Yongyang Huang
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Jitendra Solanki
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Xianxu Zeng
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Aneesh Alex
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Jason Jerwick
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| | - Zhan Zhang
- Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, 02129
| | - Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, 02129
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Center for Photonics and Nanoelectronics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA, 18015
| |
Collapse
|
6
|
Duan L, Marvdashti T, Ellerbee AK. Polarization-sensitive interleaved optical coherence tomography. OPTICS EXPRESS 2015; 23:13693-703. [PMID: 26074618 DOI: 10.1364/oe.23.013693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We introduce a new strategy for single-mode fiber based polarization-sensitive (PS-) optical coherence tomography (OCT) using orthogonally polarized optical frequency combs (OFC) in the sample arm. The two OFCs are tuned to be interleaved in the spectral domain, permitting simultaneous measurement of both polarization states from the same spatial region C close to the location of zero pathlength delay. The two polarization states of the beam in the sample arm are demultiplexed by interpolation after performing wavelength stabilization via a two-mirror calibration method. The system uses Jones matrix methods to measure quantitatively the round-trip phase retardation B-scans in the sample. A glass plate and quarter-wave plate were measured to validate the accuracy of the birefringence measurement. Further, we demonstrated the potential of this system for biomedical applications by measurement of chicken breast muscle.
Collapse
|
7
|
Lee J, Chae Y, Ahn YC, Moon S. Ultra-thin and flexible endoscopy probe for optical coherence tomography based on stepwise transitional core fiber. BIOMEDICAL OPTICS EXPRESS 2015; 6:1782-96. [PMID: 26137380 PMCID: PMC4467695 DOI: 10.1364/boe.6.001782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/09/2015] [Accepted: 04/16/2015] [Indexed: 05/18/2023]
Abstract
We present an ultra-thin fiber-body endoscopy probe for optical coherence tomography (OCT) which is based on a stepwise transitional core (STC) fiber. In a minimalistic design, our probe was made of spliced specialty fibers that could be directly used for beam probing optics without using a lens. In our probe, the OCT light delivered through a single-mode fiber was efficiently expanded to a large mode field of 24 μm diameter for a low beam divergence. The size of our probe was 85 μm in the probe's diameter while operated in a 160-μm thick protective tubing. Through theoretical and experimental analyses, our probe was found to exhibit various attractive features in terms of compactness, flexibility and reliability along with its excellent fabrication simplicity.
Collapse
Affiliation(s)
- Jangbeom Lee
- Department of Physics, Kookmin University, Seoul, 136-702,
South Korea
| | - Yugyeong Chae
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 608-737,
South Korea
| | - Yeh-Chan Ahn
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 608-737,
South Korea
| | - Sucbei Moon
- Department of Physics, Kookmin University, Seoul, 136-702,
South Korea
| |
Collapse
|
8
|
Duan L, Lee HY, Lee G, Agrawal M, Smith GT, Ellerbee AK. Single-shot speckle noise reduction by interleaved optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:120501. [PMID: 25486093 DOI: 10.1117/1.jbo.19.12.120501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/19/2014] [Indexed: 05/16/2023]
Abstract
Speckle noise is one of the dominant factors that degrade image quality in optical coherence tomography (OCT). Here, we propose a new strategy, interleaved OCT (iOCT), for spatial compounding and angular compounding. We demonstrate the efficiency of compounding with iOCT to restrain speckle noise without compromising imaging speed in phantoms and tissue samples.
Collapse
|