1
|
Palczewska G, Wojtkowski M, Palczewski K. From mouse to human: Accessing the biochemistry of vision in vivo by two-photon excitation. Prog Retin Eye Res 2023; 93:101170. [PMID: 36787681 PMCID: PMC10463242 DOI: 10.1016/j.preteyeres.2023.101170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
The eye is an ideal organ for imaging by a multi-photon excitation approach, because ocular tissues such as the sclera, cornea, lens and neurosensory retina, are highly transparent to infrared (IR) light. The interface between the retina and the retinal pigment epithelium (RPE) is especially informative, because it reflects the health of the visual (retinoid) cycle and its changes in response to external stress, genetic manipulations, and drug treatments. Vitamin A-derived retinoids, like retinyl esters, are natural fluorophores that respond to multi-photon excitation with near IR light, bypassing the filter-like properties of the cornea, lens, and macular pigments. Also, during natural aging some retinoids form bisretinoids, like diretinoid-pyridiniumethanolamine (A2E), that are highly fluorescent. These bisretinoids appear to be elevated concurrently with aging. Vitamin A-derived retinoids and bisretinoidss are detected by two-photon ophthalmoscopy (2PO), using a new class of light sources with adjustable spatial, temporal, and spectral properties. Furthermore, the two-photon (2P) absorption of IR light by the visual pigments in rod and cone photoreceptors can initiate visual transduction by cis-trans isomerization of retinal, enabling parallel functional studies. Recently we overcame concerns about safety, data interpretation and complexity of the 2P-based instrumentation, the major roadblocks toward advancing this modality to the clinic. These imaging and retina-function assessment advancements have enabled us to conduct the first 2P studies with humans.
Collapse
Affiliation(s)
- Grazyna Palczewska
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Polgenix, Inc., Department of Medical Devices, Cleveland, OH, USA; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Maciej Wojtkowski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; Department of Physiology & Biophysics, School of Medicine, And Chemistry, Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Fluorescence Angiography with Dual Fluorescence for the Early Detection and Longitudinal Quantitation of Vascular Leakage in Retinopathy. Biomedicines 2023; 11:biomedicines11020293. [PMID: 36830829 PMCID: PMC9953145 DOI: 10.3390/biomedicines11020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) afflicts more than 93 million people worldwide and is a leading cause of vision loss in working adults. While DR therapies are available, early DR development may go undetected without treatment due to the lack of sufficiently sensitive tools. Therefore, early detection is critically important to enable efficient treatment before progression to vision-threatening complications. A major clinical manifestation of early DR is retinal vascular leakage that may progress from diffuse to more localized focal leakage, leading to increased retinal thickness and diabetic macular edema (DME). In preclinical research, a hallmark of DR in mouse models is diffuse retinal leakage without increased thickness or DME, which limits the utility of optical coherence tomography and fluorescein angiography (FA) for early detection. The Evans blue assay detects diffuse leakage but requires euthanasia, which precludes longitudinal studies in the same animals. METHODS We developed a new modality of ratiometric fluorescence angiography with dual fluorescence (FA-DF) to reliably detect and longitudinally quantify diffuse retinal vascular leakage in mouse models of induced and spontaneous DR. RESULTS These studies demonstrated the feasibility and sensitivity of FA-DF in detecting and quantifying retinal vascular leakage in the same mice over time during DR progression in association with chronic hyperglycemia and age. CONCLUSIONS These proof-of-concept studies demonstrated the promise of FA-DF as a minimally invasive method to quantify DR leakage in preclinical mouse models longitudinally.
Collapse
|
3
|
Cai Y, Wu J, Dai Q. Review on data analysis methods for mesoscale neural imaging in vivo. NEUROPHOTONICS 2022; 9:041407. [PMID: 35450225 PMCID: PMC9010663 DOI: 10.1117/1.nph.9.4.041407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Significance: Mesoscale neural imaging in vivo has gained extreme popularity in neuroscience for its capacity of recording large-scale neurons in action. Optical imaging with single-cell resolution and millimeter-level field of view in vivo has been providing an accumulated database of neuron-behavior correspondence. Meanwhile, optical detection of neuron signals is easily contaminated by noises, background, crosstalk, and motion artifacts, while neural-level signal processing and network-level coordinate are extremely complicated, leading to laborious and challenging signal processing demands. The existing data analysis procedure remains unstandardized, which could be daunting to neophytes or neuroscientists without computational background. Aim: We hope to provide a general data analysis pipeline of mesoscale neural imaging shared between imaging modalities and systems. Approach: We divide the pipeline into two main stages. The first stage focuses on extracting high-fidelity neural responses at single-cell level from raw images, including motion registration, image denoising, neuron segmentation, and signal extraction. The second stage focuses on data mining, including neural functional mapping, clustering, and brain-wide network deduction. Results: Here, we introduce the general pipeline of processing the mesoscale neural images. We explain the principles of these procedures and compare different approaches and their application scopes with detailed discussions about the shortcomings and remaining challenges. Conclusions: There are great challenges and opportunities brought by the large-scale mesoscale data, such as the balance between fidelity and efficiency, increasing computational load, and neural network interpretability. We believe that global circuits on single-neuron level will be more extensively explored in the future.
Collapse
Affiliation(s)
- Yeyi Cai
- Tsinghua University, Department of Automation, Beijing, China
| | - Jiamin Wu
- Tsinghua University, Department of Automation, Beijing, China
| | - Qionghai Dai
- Tsinghua University, Department of Automation, Beijing, China
| |
Collapse
|
4
|
Niu SY, Guo LZ, Li Y, Zhang Z, Wang TD, Liu KC, Li YJ, Tsao Y, Liu TM. Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:1800812. [PMID: 36304843 PMCID: PMC9592049 DOI: 10.1109/jtehm.2022.3206488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily suppress the perturbative noise in high-contrast images; however, for low photon budget multiphoton images, a high detector gain will not only boost the signals but also bring significant background noise. In such a stochastic resonance imaging regime, subthreshold signals may be detectable with the help of noise, meaning that a denoising filter capable of removing noise without sacrificing important cellular features, such as cell boundaries, is desirable. METHOD We propose a convolutional neural network-based denoising autoencoder method - a fully convolutional deep denoising autoencoder (DDAE) - to improve the quality of three-photon fluorescence (3PF) and third-harmonic generation (THG) microscopy images. RESULTS The average of 200 acquired images of a given location served as the low-noise answer for the DDAE training. Compared with other conventional denoising methods, our DDAE model shows a better signal-to-noise ratio (28.86 and 21.66 for 3PF and THG, respectively), structural similarity (0.89 and 0.70 for 3PF and THG, respectively), and preservation of the nuclear or cellular boundaries (F1-score of 0.662 and 0.736 for 3PF and THG, respectively). It shows that DDAE is a better trade-off approach between structural similarity and preserving signal regions. CONCLUSIONS The results of this study validate the effectiveness of the DDAE system in boundary-preserved image denoising. CLINICAL IMPACT The proposed deep denoising system can enhance the quality of microscopic images and effectively support clinical evaluation and assessment.
Collapse
Affiliation(s)
- Sheng-Yong Niu
- Research Center for Information Technology Innovation (CITI)Academia SinicaTaipei11529Taiwan
- Department of Computer Science and EngineeringUniversity of California San DiegoSan DiegoCA92093USA
| | - Lun-Zhang Guo
- Department of Biomedical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yue Li
- Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, TaipaMacauChina
| | - Zhiming Zhang
- Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, TaipaMacauChina
| | - Tzung-Dau Wang
- Cardiovascular Center and Division of CardiologyDepartment of Internal MedicineCollege of Medicine, National Taiwan University HospitalTaipei10002Taiwan
| | - Kai-Chun Liu
- Research Center for Information Technology Innovation (CITI)Academia SinicaTaipei11529Taiwan
| | - You-Jin Li
- Research Center for Information Technology Innovation (CITI)Academia SinicaTaipei11529Taiwan
| | - Yu Tsao
- Research Center for Information Technology Innovation (CITI)Academia SinicaTaipei11529Taiwan
- Department of Electrical EngineeringChung Yuan Christian UniversityTaoyuan32023Taiwan
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, TaipaMacauChina
| |
Collapse
|
5
|
Xue Y, Browne AW, Tang WC, Delgado J, McLelland BT, Nistor G, Chen JT, Chew K, Lee N, Keirstead HS, Seiler MJ. Retinal Organoids Long-Term Functional Characterization Using Two-Photon Fluorescence Lifetime and Hyperspectral Microscopy. Front Cell Neurosci 2021; 15:796903. [PMID: 34955757 PMCID: PMC8707055 DOI: 10.3389/fncel.2021.796903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022] Open
Abstract
Pluripotent stem cell-derived organoid technologies have opened avenues to preclinical basic science research, drug discovery, and transplantation therapy in organ systems. Stem cell-derived organoids follow a time course similar to species-specific organ gestation in vivo. However, heterogeneous tissue yields, and subjective tissue selection reduce the repeatability of organoid-based scientific experiments and clinical studies. To improve the quality control of organoids, we introduced a live imaging technique based on two-photon microscopy to non-invasively monitor and characterize retinal organoids’ (RtOgs’) long-term development. Fluorescence lifetime imaging microscopy (FLIM) was used to monitor the metabolic trajectory, and hyperspectral imaging was applied to characterize structural and molecular changes. We further validated the live imaging experimental results with endpoint biological tests, including quantitative polymerase chain reaction (qPCR), single-cell RNA sequencing, and immunohistochemistry. With FLIM results, we analyzed the free/bound nicotinamide adenine dinucleotide (f/b NADH) ratio of the imaged regions and found that there was a metabolic shift from glycolysis to oxidative phosphorylation. This shift occurred between the second and third months of differentiation. The total metabolic activity shifted slightly back toward glycolysis between the third and fourth months and stayed relatively stable between the fourth and sixth months. Consistency in organoid development among cell lines and production lots was examined. Molecular analysis showed that retinal progenitor genes were expressed in all groups between days 51 and 159. Photoreceptor gene expression emerged around the second month of differentiation, which corresponded to the shift in the f/b NADH ratio. RtOgs between 3 and 6 months of differentiation exhibited photoreceptor gene expression levels that were between the native human fetal and adult retina gene expression levels. The occurrence of cone opsin expression (OPN1 SW and OPN1 LW) indicated the maturation of photoreceptors in the fourth month of differentiation, which was consistent with the stabilized level of f/b NADH ratio starting from 4 months. Endpoint single-cell RNA and immunohistology data showed that the cellular compositions and lamination of RtOgs at different developmental stages followed those in vivo.
Collapse
Affiliation(s)
- Yuntian Xue
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | - Andrew W Browne
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Institute for Clinical and Translational Science, University of California, Irvine, Irvine, CA, United States
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Jeffrey Delgado
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | | | | | - Jacqueline T Chen
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Kaylee Chew
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Nicolas Lee
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, United States
| | | | - Magdalene J Seiler
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Department of Physical Medicine & Rehabilitation, University of California, Irvine, Irvine, CA, United States.,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
6
|
Zou B, He Z, Zhao R, Zhu C, Liao W, Li S. Non-rigid retinal image registration using an unsupervised structure-driven regression network. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.04.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Qin Z, He S, Yang C, Yung JSY, Chen C, Leung CKS, Liu K, Qu JY. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo. LIGHT, SCIENCE & APPLICATIONS 2020; 9:79. [PMID: 32411364 PMCID: PMC7203252 DOI: 10.1038/s41377-020-0317-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 05/08/2023]
Abstract
In vivo fundus imaging offers non-invasive access to neuron structures and biochemical processes in the retina. However, optical aberrations of the eye degrade the imaging resolution and prevent visualization of subcellular retinal structures. We developed an adaptive optics two-photon excitation fluorescence microscopy (AO-TPEFM) system to correct ocular aberrations based on a nonlinear fluorescent guide star and achieved subcellular resolution for in vivo fluorescence imaging of the mouse retina. With accurate wavefront sensing and rapid aberration correction, AO-TPEFM permits structural and functional imaging of the mouse retina with submicron resolution. Specifically, simultaneous functional calcium imaging of neuronal somas and dendrites was demonstrated. Moreover, the time-lapse morphological alteration and dynamics of microglia were characterized in a mouse model of retinal disorder. In addition, precise laser axotomy was achieved, and degeneration of retinal nerve fibres was studied. This high-resolution AO-TPEFM is a promising tool for non-invasive retinal imaging and can facilitate the understanding of a variety of eye diseases as well as neurodegenerative disorders in the central nervous system.
Collapse
Affiliation(s)
- Zhongya Qin
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sicong He
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chao Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jasmine Sum-Yee Yung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Congping Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | - Kai Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianan Y. Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
8
|
Wahl DJ, Ju MJ, Jian Y, Sarunic MV. Non-invasive cellular-resolution retinal imaging with two-photon excited fluorescence. BIOMEDICAL OPTICS EXPRESS 2019; 10:4859-4873. [PMID: 31565530 PMCID: PMC6757458 DOI: 10.1364/boe.10.004859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 05/02/2023]
Abstract
Two-photon excited fluorescence (TPEF) imaging of the retina is a developing technique that provides non-invasive compound-specific measurements from the retina. In this report, we demonstrate high-resolution TPEF imaging of the mouse retina using sensorless adaptive optics (SAO) and optical coherence tomography (OCT). A single near-infrared light source was used for simultaneous multi-modal imaging with OCT and TPEF. The image-based SAO could be performed using the en face OCT or the TPEF for aberration correction. Our results demonstrate OCT and TPEF for angiography. Also, we demonstrate non-invasive cellular-resolution imaging of fluorescently labelled cells and the Retinal Pigment Epithelium (RPE) mosaic.
Collapse
Affiliation(s)
- Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Myeong Jin Ju
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Yifan Jian
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
9
|
Wahl DJ, Zhang P, Mocci J, Quintavalla M, Muradore R, Jian Y, Bonora S, Sarunic MV, Zawadzki RJ. Adaptive optics in the mouse eye: wavefront sensing based vs. image-guided aberration correction. BIOMEDICAL OPTICS EXPRESS 2019; 10:4757-4774. [PMID: 31565523 PMCID: PMC6757457 DOI: 10.1364/boe.10.004757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 05/18/2023]
Abstract
Adaptive Optics (AO) is required to achieve diffraction limited resolution in many real-life imaging applications in biology and medicine. AO is essential to guarantee high fidelity visualization of cellular structures for retinal imaging by correcting ocular aberrations. Aberration correction for mouse retinal imaging by direct wavefront measurement has been demonstrated with great success. However, for mouse eyes, the performance of the wavefront sensor (WFS) based AO can be limited by several factors including non-common path errors, wavefront reconstruction errors, and an ill-defined reference plane. Image-based AO can avoid these issues at the cost of algorithmic execution time. Furthermore, image-based approaches can provide improvements to compactness, accessibility, and even the performance of AO systems. Here, we demonstrate the ability of image-based AO to provide comparable aberration correction and image resolution to the conventional Shack-Hartmann WFS-based AO approach. The residual wavefront error of the mouse eye was monitored during a wavefront sensorless optimization to allow comparison with classical AO. This also allowed us to improve the performance of our AO system for small animal retinal imaging.
Collapse
Affiliation(s)
- Daniel J Wahl
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- These authors contributed equally
| | - Pengfei Zhang
- Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA
- These authors contributed equally
| | - Jacopo Mocci
- Department of Computer Science, University of Verona, Italy
| | | | | | - Yifan Jian
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Padova, Italy
| | | | - Robert J Zawadzki
- Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
10
|
Wahl DJ, Ng R, Ju MJ, Jian Y, Sarunic MV. Sensorless adaptive optics multimodal en-face small animal retinal imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:252-267. [PMID: 30775098 PMCID: PMC6363194 DOI: 10.1364/boe.10.000252] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
Vision researchers often use small animals due to the availability of many transgenic strains that model human diseases or express biomarkers. Adaptive optics (AO) enables non-invasive single-cell imaging in a living animal but often results in high system complexity. Sensorless AO (SAO) can provide depth-resolved aberration correction with low system complexity. We present a multi-modal sensorless AO en face retina imaging system that includes optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy (SLO), and fluorescence detection. We present a compact lens-based imaging system design that allows for a 50-degree maximum field of view (FOV), which can be reduced to the region of interest to perform SAO with the modality of choice. The system performance was demonstrated on wild type mice (C57BL/6J), and transgenic mice with GFP labeled cells. SAO SLO was used for imaging microglia (Cx3cr1-GFP) over ~1 hour, where dynamics of the microglia branches were clearly observed. Our results also include volumetric cellular imaging of microglia throughout the inner retina.
Collapse
Affiliation(s)
- Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Ringo Ng
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Myeong Jin Ju
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Yifan Jian
- Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
11
|
Palczewska G, Stremplewski P, Suh S, Alexander N, Salom D, Dong Z, Ruminski D, Choi EH, Sears AE, Kern TS, Wojtkowski M, Palczewski K. Two-photon imaging of the mammalian retina with ultrafast pulsing laser. JCI Insight 2018; 3:121555. [PMID: 30185665 DOI: 10.1172/jci.insight.121555] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Noninvasive imaging of visual system components in vivo is critical for understanding the causal mechanisms of retinal diseases and for developing therapies for their treatment. However, ultraviolet light needed to excite endogenous fluorophores that participate in metabolic processes of the retina is highly attenuated by the anterior segment of the human eye. In contrast, 2-photon excitation fluorescence imaging with pulsed infrared light overcomes this obstacle. Reducing retinal exposure to laser radiation remains a major barrier in advancing this technology to studies in humans. To increase fluorescence intensity and reduce the requisite laser power, we modulated ultrashort laser pulses with high-order dispersion compensation and applied sensorless adaptive optics and custom image recovery software and observed an over 300% increase in fluorescence of endogenous retinal fluorophores when laser pulses were shortened from 75 fs to 20 fs. No functional or structural changes to the retina were detected after exposure to 2-photon excitation imaging light with 20-fs pulses. Moreover, wide bandwidth associated with short pulses enables excitation of multiple fluorophores with different absorption spectra and thus can provide information about their relative changes and intracellular distribution. These data constitute a substantial advancement for safe 2-photon fluorescence imaging of the human eye.
Collapse
Affiliation(s)
| | - Patrycjusz Stremplewski
- Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Susie Suh
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nathan Alexander
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - David Salom
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Zhiqian Dong
- Polgenix, Inc., Department of Medical Devices, Cleveland, Ohio, USA
| | - Daniel Ruminski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Elliot H Choi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Avery E Sears
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Timothy S Kern
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Maciej Wojtkowski
- Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Zhang Y, Nallathamby PD, Vigil GD, Khan AA, Mason DE, Boerckel JD, Roeder RK, Howard SS. Super-resolution fluorescence microscopy by stepwise optical saturation. BIOMEDICAL OPTICS EXPRESS 2018; 9:1613-1629. [PMID: 29675306 PMCID: PMC5905910 DOI: 10.1364/boe.9.001613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 05/07/2023]
Abstract
Super-resolution fluorescence microscopy is an important tool in biomedical research for its ability to discern features smaller than the diffraction limit. However, due to its difficult implementation and high cost, the super-resolution microscopy is not feasible in many applications. In this paper, we propose and demonstrate a saturation-based super-resolution fluorescence microscopy technique that can be easily implemented and requires neither additional hardware nor complex post-processing. The method is based on the principle of stepwise optical saturation (SOS), where M steps of raw fluorescence images are linearly combined to generate an image with a [Formula: see text]-fold increase in resolution compared with conventional diffraction-limited images. For example, linearly combining (scaling and subtracting) two images obtained at regular powers extends the resolution by a factor of 1.4 beyond the diffraction limit. The resolution improvement in SOS microscopy is theoretically infinite but practically is limited by the signal-to-noise ratio. We perform simulations and experimentally demonstrate super-resolution microscopy with both one-photon (confocal) and multiphoton excitation fluorescence. We show that with the multiphoton modality, the SOS microscopy can provide super-resolution imaging deep in scattering samples.
Collapse
Affiliation(s)
- Yide Zhang
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556,
USA
| | - Prakash D. Nallathamby
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556,
USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556,
USA
- Notre Dame Center for Nanoscience and Nanotechnology (NDnano), University of Notre Dame, Notre Dame, IN 46556,
USA
| | - Genevieve D. Vigil
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556,
USA
| | - Aamir A. Khan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556,
USA
| | - Devon E. Mason
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556,
USA
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104,
USA
| | - Joel D. Boerckel
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104,
USA
| | - Ryan K. Roeder
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556,
USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556,
USA
- Notre Dame Center for Nanoscience and Nanotechnology (NDnano), University of Notre Dame, Notre Dame, IN 46556,
USA
| | - Scott S. Howard
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556,
USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556,
USA
- Notre Dame Center for Nanoscience and Nanotechnology (NDnano), University of Notre Dame, Notre Dame, IN 46556,
USA
| |
Collapse
|
13
|
In vivo two-photon imaging of retina in rabbits and rats. Exp Eye Res 2018; 166:40-48. [DOI: 10.1016/j.exer.2017.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 11/21/2022]
|
14
|
Zhang L, Song W, Shao D, Zhang S, Desai M, Ness S, Roy S, Yi J. Volumetric fluorescence retinal imaging in vivo over a 30-degree field of view by oblique scanning laser ophthalmoscopy (oSLO). BIOMEDICAL OPTICS EXPRESS 2018; 9:25-40. [PMID: 29359085 PMCID: PMC5772579 DOI: 10.1364/boe.9.000025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 05/03/2023]
Abstract
While fluorescent contrast is widely used in ophthalmology, three-dimensional (3D) fluorescence retinal imaging over a large field of view (FOV) has been challenging. In this paper, we describe a novel oblique scanning laser ophthalmoscopy (oSLO) technique that provides 3D volumetric fluorescence retinal imaging with only one raster scan. The technique utilizes scanned oblique illumination and angled detection to obtain fluorescent cross-sectional images, analogous to optical coherence tomography (OCT) line scans (or B-scans). By breaking the coaxial optical alignment used in conventional retinal imaging modalities, depth resolution is drastically improved. To demonstrate the capability of oSLO, we have performed in vivo volumetric fluorescein angiography (FA) of the rat retina with ~25μm depth resolution and over a 30° FOV. Using depth segmentation, oSLO can obtain high contrast images of the microvasculature down to single capillaries in 3D. The multi-modal nature of oSLO also allows for seamless combination with simultaneous OCT angiography.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Medicine, Boston University School of Medicine, Boston MA, 02118, USA
- These authors contributed equally to this work
| | - Weiye Song
- Department of Medicine, Boston University School of Medicine, Boston MA, 02118, USA
- These authors contributed equally to this work
| | - Di Shao
- Department of Medicine, Boston University School of Medicine, Boston MA, 02118, USA
| | - Sui Zhang
- Danna-Farber Cancer Institute, Boston MA, 02215, USA
| | - Manishi Desai
- Department of Ophthalmology, Boston University School of Medicine, Boston MA, 02118, USA
| | - Steven Ness
- Department of Ophthalmology, Boston University School of Medicine, Boston MA, 02118, USA
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston MA, 02118, USA
- Department of Ophthalmology, Boston University School of Medicine, Boston MA, 02118, USA
| | - Ji Yi
- Department of Medicine, Boston University School of Medicine, Boston MA, 02118, USA
- Center of Regenerative Medicine, Boston University, Boston, MA, 02118, USA
- Boston University Photonics Center, Boston MA, 02215, USA
- These authors contributed equally to this work
| |
Collapse
|
15
|
Marcos S, Werner JS, Burns SA, Merigan WH, Artal P, Atchison DA, Hampson KM, Legras R, Lundstrom L, Yoon G, Carroll J, Choi SS, Doble N, Dubis AM, Dubra A, Elsner A, Jonnal R, Miller DT, Paques M, Smithson HE, Young LK, Zhang Y, Campbell M, Hunter J, Metha A, Palczewska G, Schallek J, Sincich LC. Vision science and adaptive optics, the state of the field. Vision Res 2017; 132:3-33. [PMID: 28212982 PMCID: PMC5437977 DOI: 10.1016/j.visres.2017.01.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/27/2022]
Abstract
Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yuhua Zhang
- University of Alabama at Birmingham, Birmingham, USA
| | | | | | | | | | | | | |
Collapse
|