1
|
Chou LT, Wu SH, Hung HH, Lin WZ, Chen ZP, Ivanov AA, Chia SH. Compact multicolor two-photon fluorescence microscopy enabled by tailorable continuum generation from self-phase modulation and dispersive wave generation. OPTICS EXPRESS 2022; 30:40315-40327. [PMID: 36298966 DOI: 10.1364/oe.470602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
By precisely managing fiber-optic nonlinearity with anomalous dispersion, we have demonstrated the control of generating plural few-optical-cycle pulses based on a 24-MHz Chromium:forsterite laser, allowing multicolor two-photon tissue imaging by wavelength mixing. The formation of high-order soliton and its efficient coupling to dispersive wave generation leads to phase-matched spectral broadening, and we have obtained a broadband continuum ranging from 830 nm to 1200 nm, delivering 5-nJ pulses with a pulse width of 10.5 fs using a piece of large-mode-area fiber. We locate the spectral enhancement at around 920 nm for the two-photon excitation of green fluorophores, and we can easily compress the resulting pulse close to its limited duration without the need for active pulse shaping. To optimize the wavelength mixing for sum-frequency excitation, we have realized the management of the power ratio and group delay between the soliton and dispersive wave by varying the initial pulse energy without additional delay control. We have thus demonstrated simultaneous three-color two-photon tissue imaging with contrast management between different signals. Our source optimization leads to efficient two-photon excitation reaching a 500-µm imaging depth under a low 14-mW illumination power. We believe our source development leads to an efficient and compact approach for driving multicolor two-photon fluorescence microscopy and other ultrafast investigations, such as strong-field-driven applications.
Collapse
|
2
|
Lühder TAK, Chemnitz M, Schneidewind H, Schartner EP, Ebendorff‐Heidepriem H, Schmidt MA. Tailored Multi-Color Dispersive Wave Formation in Quasi-Phase-Matched Exposed Core Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103864. [PMID: 35038237 PMCID: PMC8922130 DOI: 10.1002/advs.202103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Widely wavelength-tunable femtosecond light sources in a compact, robust footprint play a central role in many prolific research fields and technologies, including medical diagnostics, biophotonics, and metrology. Fiber lasers are on the verge in the development of such sources, yet widespan spectral tunability of femtosecond pulses remains a pivotal challenge. Dispersive wave generation, also known as Cherenkov radiation, offers untapped potentials to serve these demands. In this work, the concept of quasi-phase matching for multi-order dispersive wave formation with record-high spectral fidelity and femtosecond durations is exploited in selected, partially conventionally unreachable spectral regions. Versatile patterned sputtering is utilized to realize height-modulated high-index nano-films on exposed fiber cores to alter fiber dispersion to an unprecedented degree through spatially localized, induced resonances. Nonlinear optical experiments and simulations, as well as phase-mismatching considerations based on an effective dispersion, confirm the conversion process and reveal unique emission features, such as almost power-independent wavelength stability and femtosecond duration. This resonance-empowered approach is applicable to both fiber and on-chip photonic systems and paves the way to instrumentalize dispersive wave generation as a unique tool for efficient, coherent femtosecond multi-frequency conversion for applications in areas such as bioanalytics, life science, quantum technology, or metrology.
Collapse
Affiliation(s)
- Tilman A. K. Lühder
- Leibniz Institute of Photonic TechnologyAlbert‐Einstein‐Str. 9Jena07745Germany
| | - Mario Chemnitz
- Institut National de la Recherche ScientifiqueCentre Énergie Matériaux Télécommunications1650 Boulevard Lionel‐BouletVarennesQuebecJ3X 1S2Canada
| | - Henrik Schneidewind
- Leibniz Institute of Photonic TechnologyAlbert‐Einstein‐Str. 9Jena07745Germany
| | - Erik P. Schartner
- School of Physical Sciences and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) and Institute for Photonics and Advanced Sensing (IPAS)The University of AdelaideAdelaideSA5005Australia
| | - Heike Ebendorff‐Heidepriem
- School of Physical Sciences and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) and Institute for Photonics and Advanced Sensing (IPAS)The University of AdelaideAdelaideSA5005Australia
| | - Markus A. Schmidt
- Leibniz Institute of Photonic TechnologyAlbert‐Einstein‐Str. 9Jena07745Germany
- Otto Schott Institute of Material ResearchFraunhoferstr. 6Jena07743Germany
- Abbe School of Photonics and Physics FacultyFriedrich Schiller UniversityJena07743Germany
| |
Collapse
|
3
|
Borah BJ, Sun CK. A rapid denoised contrast enhancement method digitally mimicking an adaptive illumination in submicron-resolution neuronal imaging. iScience 2022; 25:103773. [PMID: 35169684 PMCID: PMC8829796 DOI: 10.1016/j.isci.2022.103773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 12/02/2022] Open
Abstract
Optical neuronal imaging often shows ultrafine structures, such as a nerve fiber, coexisting with ultrabright structures, such as a soma with a substantially higher fluorescence-protein concentration. Owing to experimental and environmental factors, a laser-scanning multiphoton optical microscope (MPM) often encounters a high-frequency background noise that might contaminate such weak-intensity ultrafine neuronal structures. A straightforward contrast enhancement often leads to the saturation of the brighter ones, and might further amplify the high-frequency background noise. We report a digital approach called rapid denoised contrast enhancement (DCE), which digitally mimics a hardware-based adaptive/controlled illumination technique by means of digitally optimizing the signal strengths and hence the visibility of such weak-intensity structures while mostly preventing the saturation of the brightest ones. With large field-of-view (FOV) two-photon excitation fluorescence (TPEF) neuronal imaging, we validate the effectiveness of DCE over state-of-the-art digital image processing algorithms. With compute-unified-device-architecture (CUDA)-acceleration, a real-time DCE is further enabled with a reduced time complexity. A real-time applicable CUDA-accelerated Noise-suppressed Contrast Enhancement method Digitally mimics a traditional hardware-based adaptive/controlled illumination Drastically improves the visibility of noise-contaminated ultrafine neuronal structures Applicable in large-field high-NFOM multiphoton optical microscopes
Collapse
Affiliation(s)
- Bhaskar Jyoti Borah
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Diao X, Chen R, Chang G. Particle swarm optimization of SPM-enabled spectral selection to achieve an octave-spanning wavelength-shift. OPTICS EXPRESS 2021; 29:39766-39776. [PMID: 34809333 DOI: 10.1364/oe.442348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
SPM-enabled spectral selection (SESS) constitutes a powerful fiber-optic technique to generate wavelength broadly tunable femtosecond pulses. In the current demonstration, the maximum tuning range is 400 nm and the energy conversion efficiency from the pump source to the outmost spectral lobes is ∼25%. In this submission, we apply the particle swarm optimization method to the generalized nonlinear Schrödinger equation to identify the optimal parameters that maximize both the tuning range and the conversion efficiency. We show that SESS in an optical fiber with the optimized dispersion can deliver SESS pulses tunable in one octave wavelength range and the conversion efficiency can be as high as 80%. We further show the feasibility of experimental implementation based on specially designed fibers or on-chip waveguides.
Collapse
|
5
|
Dai R, Zhang N, Meng Y, Zhou Z, Wang F. High energy (>40 nJ), sub-100 fs, 950 nm laser for two-photon microscopy. OPTICS EXPRESS 2021; 29:38979-38988. [PMID: 34809270 DOI: 10.1364/oe.440254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Compact and high-energy femtosecond fiber lasers operating around 900-950 nm are desirable for multiphoton microscopy. Here, we demonstrate a >40 nJ, sub-100 fs, wavelength-tunable ultrafast laser system based on chirped pulse amplification (CPA) in thulium-doped fiber and second-harmonic generation (SHG) technology. Through effective control of the nonlinear effect in the CPA process, we have obtained 92-fs pulses at 1903 nm with an average power of 0.89 W and a pulse energy of 81 nJ. By frequency doubling, 95-fs pulses at 954 nm with an average power of 0.46 W and a pulse energy of 42 nJ have been generated. In addition, our system can also achieve tunable wavelength from 932 nm to 962 nm (frequency doubled from 1863 nm to 1919 nm). A pulse width of ∼100 fs and sufficient pulse energy are ensured over the entire tuning range. Finally, we applied the laser in a two-photon microscope and obtained superior imaging results. Due to a relatively low repetition rate (∼ 10 MHz), similar imaging quality can be achieved at significantly reduced average power compared with a commercial 80 MHz laser system. At the same time, the lower average power is helpful in limiting the thermal load to the samples. It is believed that such a setup, with its well-balanced optical characteristics and compact footprint, provides an ideal source for two-photon microscopy.
Collapse
|
6
|
Hsiao YT, Huang YF, Borah BJ, Chen SK, Sun CK. Single-laser-based simultaneous four-wavelength excitation source for femtosecond two-photon fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:4661-4679. [PMID: 34513216 PMCID: PMC8407803 DOI: 10.1364/boe.428771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Multicolor labeling of biological samples with large volume is required for omic-level of study such as the construction of nervous system connectome. Among the various imaging method, two photon microscope has multiple advantages over traditional single photon microscope for higher resolution and could image large 3D volumes of tissue samples with superior imaging depth. However, the growing number of fluorophores for labeling underlines the urgent need for an ultrafast laser source with the capability of providing simultaneous plural excitation wavelengths for multiple fluorophores. Here, we propose and demonstrate a single-laser-based four-wavelength excitation source for two-photon fluorescence microscopy. Using a sub-100 fs 1,070-nm Yb:fiber laser to pump an ultrashort nonlinear photonic crystal fiber in the low negative dispersion region, we introduced efficient self-phase modulation and acquired a blue-shifted spectrum dual-peaked at 812 and 960 nm with 28.5% wavelength conversion efficiency. By compressing the blue-shift near-IR spectrum to 33 fs to ensure the temporal overlap of the 812 and 960 nm peaks, the so-called sum frequency effect created the third virtual excitation wavelength effectively at 886 nm. Combined with the 1,070 nm laser source as the fourth excitation wavelength, the all-fiber-format four-wavelength excitation source enabled simultaneous four-color two-photon imaging in Brainbow AAV-labeled (TagBFP, mTFP, EYFP, and mCherry) brain samples. With an increased number of excitation wavelengths and improved excitation efficiency than typical commercial femtosecond lasers, our compact four-wavelength excitation approach can provide a versatile, efficient, and easily accessible solution for multiple-color two-photon fluorescence imaging in the field of neuroscience, biomolecular probing, and clinical applications with at least four spectrally-distinct fluorophores.
Collapse
Affiliation(s)
- Yang-Ting Hsiao
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Fan Huang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Bhaskar Jyoti Borah
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Kuo Chen
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Kaya M, Stein F, Rouwkema J, Khalil ISM, Misra S. Serial imaging of micro-agents and cancer cell spheroids in a microfluidic channel using multicolor fluorescence microscopy. PLoS One 2021; 16:e0253222. [PMID: 34129617 PMCID: PMC8205435 DOI: 10.1371/journal.pone.0253222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Multicolor fluorescence microscopy is a powerful technique to fully visualize many biological phenomena by acquiring images from different spectrum channels. This study expands the scope of multicolor fluorescence microscopy by serial imaging of polystyrene micro-beads as surrogates for drug carriers, cancer spheroids formed using HeLa cells, and microfluidic channels. Three fluorophores with different spectral characteristics are utilized to perform multicolor microscopy. According to the spectrum analysis of the fluorophores, a multicolor widefield fluorescence microscope is developed. Spectral crosstalk is corrected by exciting the fluorophores in a round-robin manner and synchronous emitted light collection. To report the performance of the multicolor microscopy, a simplified 3D tumor model is created by placing beads and spheroids inside a channel filled with the cell culture medium is imaged at varying exposure times. As a representative case and a method for bio-hybrid drug carrier fabrication, a spheroid surface is coated with beads in a channel utilizing electrostatic forces under the guidance of multicolor microscopy. Our experiments show that multicolor fluorescence microscopy enables crosstalk-free and spectrally-different individual image acquisition of beads, spheroids, and channels with the minimum exposure time of 5.5 ms. The imaging technique has the potential to monitor drug carrier transportation to cancer cells in real-time.
Collapse
Affiliation(s)
- Mert Kaya
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Fabian Stein
- Vascularization Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Jeroen Rouwkema
- Vascularization Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Islam S. M. Khalil
- Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Chou LT, Liu YC, Zhong DL, Lin WZ, Hung HH, Chan CJ, Chen ZP, Chia SH. Low noise, self-phase-modulation-enabled femtosecond fiber sources tunable in 740-1236 nm for wide two-photon fluorescence microscopy applications. BIOMEDICAL OPTICS EXPRESS 2021; 12:2888-2901. [PMID: 34168906 PMCID: PMC8194626 DOI: 10.1364/boe.422668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 05/13/2023]
Abstract
We have demonstrated widely tunable Yb:fiber-based laser sources, aiming to replace Ti:sapphire lasers for the nJ-level ultrafast applications, especially for the uses of nonlinear light microscopy. We investigated the influence of different input parameters to obtain an expansive spectral broadening, enabled by self-phase modulation and further reshaped by self-steepening, in the normal dispersion regime before the fiber damage. We also discussed the compressibility and intensity fluctuations of the demonstrated pulses, to reach the transform-limited duration with a very low intensity noise. Most importantly, we have demonstrated clear two-photon fluorescence images from UV-absorbing fluorophores to deep red dye stains.
Collapse
Affiliation(s)
- Lu-Ting Chou
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Yu-Cheng Liu
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Dong-Lin Zhong
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Wei-Zhong Lin
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Hao-Hsuan Hung
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Chao-Jin Chan
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Zi-Ping Chen
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Shih-Hsuan Chia
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| |
Collapse
|
9
|
Chang G, Wei Z. Ultrafast Fiber Lasers: An Expanding Versatile Toolbox. iScience 2020; 23:101101. [PMID: 32408170 PMCID: PMC7225726 DOI: 10.1016/j.isci.2020.101101] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 11/02/2022] Open
Abstract
Ultrafast fiber lasers have gained rapid advances in last decades for their intrinsic merits such as potential of all-fiber format, excellent beam quality, superior power scalability, and high single-pass gain, which opened widespread applications in high-field science, laser machining, precision metrology, optical communication, microscopy and spectroscopy, and modern ophthalmology, to name a few. Performance of an ultrafast fiber laser is well defined by the laser parameters including repetition rate, spectral bandwidth, pulse duration, pulse energy, wavelength tuning range, and average power. During past years, these parameters have been pushed to an unprecedented level. In this paper, we review these enabling technologies and explicitly show that the nonlinear interaction between ultrafast pulses and optical fibers plays the essential role. As a result of rapid development in both active and passive fibers, the toolbox of ultrafast fiber lasers will continue to expand and provide solutions to scientific and industrial problems.
Collapse
Affiliation(s)
- Guoqing Chang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhiyi Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| |
Collapse
|
10
|
Perrin L, Bayarmagnai B, Gligorijevic B. Frontiers in Intravital Multiphoton Microscopy of Cancer. Cancer Rep (Hoboken) 2020; 3:e1192. [PMID: 32368722 PMCID: PMC7197974 DOI: 10.1002/cnr2.1192] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background Cancer is a highly complex disease which involves the co-operation of tumor cells with multiple types of host cells and the extracellular matrix. Cancer studies which rely solely on static measurements of individual cell types are insufficient to dissect this complexity. In the last two decades, intravital microscopy has established itself as a powerful technique that can significantly improve our understanding of cancer by revealing the dynamic interactions governing cancer initiation, progression and treatment effects, in living animals. This review focuses on intravital multiphoton microscopy (IV-MPM) applications in mouse models of cancer. Recent Findings IV-MPM studies have already enabled a deeper understanding of the complex events occurring in cancer, at the molecular, cellular and tissue levels. Multiple cells types, present in different tissues, influence cancer cell behavior via activation of distinct signaling pathways. As a result, the boundaries in the field of IV-MPM are continuously being pushed to provide an integrated comprehension of cancer. We propose that optics, informatics and cancer (cell) biology are co-evolving as a new field. We have identified four emerging themes in this new field. First, new microscopy systems and image processing algorithms are enabling the simultaneous identification of multiple interactions between the tumor cells and the components of the tumor microenvironment. Second, techniques from molecular biology are being exploited to visualize subcellular structures and protein activities within individual cells of interest, and relate those to phenotypic decisions, opening the door for "in vivo cell biology". Third, combining IV-MPM with additional imaging modalities, or omics studies, holds promise for linking the cell phenotype to its genotype, metabolic state or tissue location. Finally, the clinical use of IV-MPM for analyzing efficacy of anti-cancer treatments is steadily growing, suggesting a future role of IV-MPM for personalized medicine. Conclusion IV-MPM has revolutionized visualization of tumor-microenvironment interactions in real time. Moving forward, incorporation of novel optics, automated image processing, and omics technologies, in the study of cancer biology, will not only advance our understanding of the underlying complexities but will also leverage the unique aspects of IV-MPM for clinical use.
Collapse
Affiliation(s)
- Louisiane Perrin
- Department of BioengineeringTemple UniversityPhiladelphiaPennsylvania
| | | | - Bojana Gligorijevic
- Department of BioengineeringTemple UniversityPhiladelphiaPennsylvania
- Fox Chase Cancer CenterCancer Biology ProgramPhiladelphiaPennsylvania
| |
Collapse
|
11
|
Maibohm C, Silva F, Figueiras E, Guerreiro PT, Brito M, Romero R, Crespo H, Nieder JB. SyncRGB-FLIM: synchronous fluorescence imaging of red, green and blue dyes enabled by ultra-broadband few-cycle laser excitation and fluorescence lifetime detection. BIOMEDICAL OPTICS EXPRESS 2019; 10:1891-1904. [PMID: 31086710 PMCID: PMC6484984 DOI: 10.1364/boe.10.001891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
We demonstrate for the first time that an ultra-broadband 7 femtosecond (fs) few-cycle laser can be used for multicolor nonlinear imaging in a single channel detection geometry, when employing a time-resolved fluorescence detection scheme. On a multi-chromophore-labelled cell sample we show that the few-cycle laser can efficiently excite the multiple chromophores over a >400 nm two-photon absorption range. By combining the few-cycle laser excitation with time-correlated single-photon counting (TCSPC) detection to record two-photon fluorescence lifetime imaging microscopy (FLIM) images, the localization of different chromophores in the cell can be identified based on their fluorescence decay properties. The novel SyncRGB-FLIM multi-color bioimaging technique opens the possibility of real-time protein-protein interaction studies, where its single-scan operation translates into reduced laser exposure of the sample, resulting in more photoprotective conditions for biological specimens.
Collapse
Affiliation(s)
- Christian Maibohm
- Department of Nanophotonics, Ultrafast Bio- and Nanophotonics Group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga n/a, 4715-330 Braga, Portugal
| | - Francisco Silva
- Sphere Ultrafast Photonics, R. do Campo Alegre 1021, Edifício FC6, 4169-007 Porto, Portugal
| | - Edite Figueiras
- Department of Nanophotonics, Ultrafast Bio- and Nanophotonics Group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga n/a, 4715-330 Braga, Portugal
- Present address: Fundação Champalimaud, Avenida Brasília, 1400-038 Lisboa, Portugal
| | - Paulo T. Guerreiro
- Sphere Ultrafast Photonics, R. do Campo Alegre 1021, Edifício FC6, 4169-007 Porto, Portugal
- IFIMUP-IN and Dept. of Physics and Astronomy, Faculty of Sciences, University Porto, R. do Campo Alegre 697, 4169-007 Porto, Portugal
| | - Marina Brito
- Department of Nanophotonics, Ultrafast Bio- and Nanophotonics Group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga n/a, 4715-330 Braga, Portugal
| | - Rosa Romero
- Sphere Ultrafast Photonics, R. do Campo Alegre 1021, Edifício FC6, 4169-007 Porto, Portugal
- IFIMUP-IN and Dept. of Physics and Astronomy, Faculty of Sciences, University Porto, R. do Campo Alegre 697, 4169-007 Porto, Portugal
| | - Helder Crespo
- Sphere Ultrafast Photonics, R. do Campo Alegre 1021, Edifício FC6, 4169-007 Porto, Portugal
- IFIMUP-IN and Dept. of Physics and Astronomy, Faculty of Sciences, University Porto, R. do Campo Alegre 697, 4169-007 Porto, Portugal
| | - Jana B. Nieder
- Department of Nanophotonics, Ultrafast Bio- and Nanophotonics Group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga n/a, 4715-330 Braga, Portugal
| |
Collapse
|
12
|
Zhang L, Zhang X, Pierangeli D, Li Y, Fan D, Conti C. Synchrotron resonant radiation from nonlinear self-accelerating pulses. OPTICS EXPRESS 2018; 26:14710-14717. [PMID: 29877407 DOI: 10.1364/oe.26.014710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Solitons and nonlinear waves emit resonant radiation in the presence of perturbations. This effect is relevant for nonlinear fiber optics, supercontinuum generation, rogue waves, and complex nonlinear dynamics. However, resonant radiation is narrowband, and the challenge is finding novel ways to generate and tailor broadband spectra. We theoretically predict that nonlinear self-accelerated pulses emit a novel form of synchrotron radiation that is extremely broadband and controllable. We develop an analytic theory and confirm the results by numerical analysis. This new form of supercontinuum generation can be highly engineered by shaping the trajectory of the nonlinear self-accelerated pulses. Our results may find applications in novel highly efficient classical and quantum sources for spectroscopy, biophysics, security, and metrology.
Collapse
|
13
|
Zhuo GY, Su HC, Wang HY, Chan MC. In situ high-resolution thermal microscopy on integrated circuits. OPTICS EXPRESS 2017; 25:21548-21558. [PMID: 29041452 DOI: 10.1364/oe.25.021548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
The miniaturization of metal tracks in integrated circuits (ICs) can cause abnormal heat dissipation, resulting in electrostatic discharge, overvoltage breakdown, and other unwanted issues. Unfortunately, locating areas of abnormal heat dissipation is limited either by the spatial resolution or imaging acquisition speed of current thermal analytical techniques. A rapid, non-contact approach to the thermal imaging of ICs with sub-μm resolution could help to alleviate this issue. In this work, based on the intensity of the temperature-dependent two-photon fluorescence (TPF) of Rhodamine 6G (R6G) material, we developed a novel fast and non-invasive thermal microscopy with a sub-μm resolution. Its application to the location of hotspots that may evolve into thermally induced defects in ICs was also demonstrated. To the best of our knowledge, this is the first study to present high-resolution 2D thermal microscopic images of ICs, showing the generation, propagation, and distribution of heat during its operation. According to the demonstrated results, this scheme has considerable potential for future in situ hotspot analysis during the optimization stage of IC development.
Collapse
|