1
|
Li K, Yang J, Liang W, Li X, Zhang C, Chen L, Wu C, Zhang X, Xu Z, Wang Y, Meng L, Zhang Y, Chen Y, Zhou SK. O-PRESS: Boosting OCT axial resolution with Prior guidance, Recurrence, and Equivariant Self-Supervision. Med Image Anal 2024; 99:103319. [PMID: 39270466 DOI: 10.1016/j.media.2024.103319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/10/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Optical coherence tomography (OCT) is a noninvasive technology that enables real-time imaging of tissue microanatomies. The axial resolution of OCT is intrinsically constrained by the spectral bandwidth of the employed light source while maintaining a fixed center wavelength for a specific application. Physically extending this bandwidth faces strong limitations and requires a substantial cost. We present a novel computational approach, called as O-PRESS, for boosting the axial resolution of OCT with Prior guidance, a Recurrent mechanism, and Equivariant Self-Supervision. Diverging from conventional deconvolution methods that rely on physical models or data-driven techniques, our method seamlessly integrates OCT modeling and deep learning, enabling us to achieve real-time axial-resolution enhancement exclusively from measurements without a need for paired images. Our approach solves two primary tasks of resolution enhancement and noise reduction with one treatment. Both tasks are executed in a self-supervised manner, with equivariance imaging and free space priors guiding their respective processes. Experimental evaluations, encompassing both quantitative metrics and visual assessments, consistently verify the efficacy and superiority of our approach, which exhibits performance on par with fully supervised methods. Importantly, the robustness of our model is affirmed, showcasing its dual capability to enhance axial resolution while concurrently improving the signal-to-noise ratio.
Collapse
Affiliation(s)
- Kaiyan Li
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei Anhui, 230026, China; Center for Medical Imaging, Robotics, Analytic Computing & Learning (MIRACLE), Suzhou Institute for Advanced Research, USTC, Suzhou Jiangsu, 215123, China
| | - Jingyuan Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wenxuan Liang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei Anhui, 230026, China; Center for Medical Imaging, Robotics, Analytic Computing & Learning (MIRACLE), Suzhou Institute for Advanced Research, USTC, Suzhou Jiangsu, 215123, China; School of Physical Sciences, University of Science and Technology of China, Hefei Anhui, 230026, China
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, 21287, USA
| | - Chenxi Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lulu Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chan Wu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiao Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhiyan Xu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yueling Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lihui Meng
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Zhang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei Anhui, 230026, China; Center for Medical Imaging, Robotics, Analytic Computing & Learning (MIRACLE), Suzhou Institute for Advanced Research, USTC, Suzhou Jiangsu, 215123, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - S Kevin Zhou
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei Anhui, 230026, China; Center for Medical Imaging, Robotics, Analytic Computing & Learning (MIRACLE), Suzhou Institute for Advanced Research, USTC, Suzhou Jiangsu, 215123, China; Key Laboratory of Precision and Intelligent Chemistry, USTC, Hefei Anhui, 230026, China; Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.
| |
Collapse
|
2
|
Dąbrowska AM, Kolenderska SM, Szlachetka J, Słowik K, Kolenderski P. Quantum-inspired optical coherence tomography using classical light in a single-photon counting regime. OPTICS LETTERS 2024; 49:363-366. [PMID: 38194569 DOI: 10.1364/ol.505678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
Quantum optical coherence tomography (Q-OCT) presents many advantages over its classical counterpart, optical coherence tomography (OCT), provides an increased axial resolution, and is immune to even orders of dispersion. The core of Q-OCT is the quantum interference of negatively correlated entangled photon pairs which, in the Fourier domain, are observed by means of a joint spectrum measurement. In this work, we explore the use of a spectral approach in a novel configuration where classical light pulses are employed instead of entangled photons. The intensity of these light pulses is reduced to a single photon level. We report theoretical analysis along with its experimental validation to show that although such a classical light is much easier to launch into an experimental system, it offers limited benefits compared to Q-OCT based on the entangled light. We analyze the differences in the characteristics of the joint spectrum obtained with entangled photons and with classical optical pulses and point out to the differences' source: the lack of the advantage-bringing term in the signal.
Collapse
|
3
|
Maliszewski KA, Kolenderski P, Vetrova V, Kolenderska SM. Towards retrieving dispersion profiles using quantum-mimic optical coherence tomography and machine learning. OPTICS EXPRESS 2022; 30:45624-45634. [PMID: 36522965 DOI: 10.1364/oe.460079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Artefacts in quantum-mimic optical coherence tomography are considered detrimental because they scramble the images even for the simplest objects. They are a side effect of autocorrelation, which is used in the quantum entanglement mimicking algorithm behind this method. Interestingly, the autocorrelation imprints certain characteristics onto an artefact - it makes its shape and characteristics depend on the amount of dispersion exhibited by the layer that artefact corresponds to. In our method, a neural network learns the unique relationship between the artefacts' shape and GVD, and consequently, it is able to provide a good qualitative representation of object's dispersion profile for never-seen-before data: computer-generated single dispersive layers and experimental pieces of glass. We show that the autocorrelation peaks - additional peaks in the A-scan appearing due to the interference of light reflected from the object - affect the GVD profiles. Through relevant calculations, simulations and experimental testing, the mechanism leading to the observed GVD changes is identified and explained. Finally, the network performance is tested in the presence of noise in the data and with the experimental data representing single layers of quartz, sapphire and BK7.
Collapse
|
4
|
Liu D, Hennelly BM. Improved Wavelength Calibration by Modeling the Spectrometer. APPLIED SPECTROSCOPY 2022; 76:1283-1299. [PMID: 35726593 PMCID: PMC9597159 DOI: 10.1177/00037028221111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Wavelength calibration is a necessary first step for a range of applications in spectroscopy. The relationship between wavelength and pixel position on the array detector is approximately governed by a low-order polynomial and traditional wavelength calibration involves first-, second-, and third-order polynomial fitting to the pixel positions of spectral lines from a well known reference lamp such as neon. However, these methods lose accuracy for bands outside of the outermost spectral line in the reference spectrum. We propose a fast and robust wavelength calibration routine based on modeling the optical system that is the spectrometer. For spectral bands within the range of spectral lines of the lamp, we report similar accuracy to second- and third-order fitting. For bands that lie outside of the range of spectral lines, we report an accuracy 12-121 times greater than that of third-order fitting and 2.5-6 times more accurate than second-order fitting. The algorithm is developed for both reflection and transmission spectrometers and tested for both cases. Compared with similar algorithms in the literature that use the physical model of the spectrometer, we search over more physical parameters in shorter time, and obtain superior accuracy. A secondary contribution in this paper is the introduction of new evaluation methods for wavelength accuracy that are superior to traditional evaluation.
Collapse
Affiliation(s)
- Dongyue Liu
- Department of Electronic Engineering,
Maynooth
University, Kildare, Ireland
| | - Bryan M. Hennelly
- Department of Electronic Engineering,
Maynooth
University, Kildare, Ireland
| |
Collapse
|
5
|
Miao Y, Song J, Hsu D, Ng R, Jian Y, Sarunic MV, Ju MJ. Numerical calibration method for a multiple spectrometer-based OCT system. BIOMEDICAL OPTICS EXPRESS 2022; 13:1685-1701. [PMID: 35414988 PMCID: PMC8973183 DOI: 10.1364/boe.450942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The present paper introduces a numerical calibration method for the easy and practical implementation of multiple spectrometer-based spectral-domain optical coherence tomography (SD-OCT) systems. To address the limitations of the traditional hardware-based spectrometer alignment across more than one spectrometer, we applied a numerical spectral calibration algorithm where the pixels corresponding to the same wavelength in each unit are identified through spatial- and frequency-domain interferometric signatures of a mirror sample. The utility of dual spectrometer-based SD-OCT imaging is demonstrated through in vivo retinal imaging at two different operation modes with high-speed and dual balanced acquisitions, respectively, in which the spectral alignment is critical to achieve improved retinal image data without any artifacts caused by misalignment of the spectrometers.
Collapse
Affiliation(s)
- Yusi Miao
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jun Song
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Destiny Hsu
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Ringo Ng
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Yifan Jian
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Marinko V. Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Institute of Ophthalmology, University College London, London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Myeong Jin Ju
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Pijewska E, Zhang P, Meina M, Meleppat RK, Szkulmowski M, Zawadzki RJ. Extraction of phase-based optoretinograms (ORG) from serial B-scans acquired over tens of seconds by mouse retinal raster scanning OCT system. BIOMEDICAL OPTICS EXPRESS 2021; 12:7849-7871. [PMID: 35003871 PMCID: PMC8713677 DOI: 10.1364/boe.439900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Several specialized retinal optical coherence tomography (OCT) acquisition and processing methods have been recently developed to allow in vivo probing of light-evoked photoreceptors function, focusing on measurements in individual photoreceptors (rods and cones). Recent OCT investigations in humans and experimental animals have shown that the outer segments in dark-adapted rods and cones elongate in response to the visible optical stimuli that bleach fractions of their visual photopigment. We have previously successfully contributed to these developments by implementing OCT intensity-based "optoretinograms" (ORG), the paradigm of using near-infrared OCT (NIR OCT) to measure bleaching-induced back-scattering and/or elongation changes of photoreceptors in the eye in vivo. In parallel, several groups have successfully implemented phase-based ORGs, mainly in human studies, exploiting changes in the phases of back-scattered light. This allowed more sensitive observations of tiny alterations of photoreceptors structures. Applications of the phase-based ORG have been implemented primarily in high speed and cellular resolution AO-OCT systems that can visualize photoreceptor mosaic, allowing phase measurements of path length changes in outer segments of individual photoreceptors. The phase-based ORG in standard resolution OCT systems is much more demanding to implement and has not been explored extensively. This manuscript describes our efforts to implement a phase analysis framework to retinal images acquired with a standard resolution and raster scanning OCT system, which offers much lower phase stability than line-field or full-field OCT detection schemes due to the relatively slower acquisition speed. Our initial results showcase the successful extraction of phase-based ORG signal from the B-scans acquired at ∼100 Hz rate and its favorable comparison with intensity-based ORG signal extracted from the same data sets. We implemented the calculation of phase-based ORG signals using Knox-Thompson paths and modified signal recovery by adding decorrelation weights. The phase-sensitive ORG signal analysis developed here for mouse retinal raster scanning OCT systems could be in principle extended to clinical retinal raster scanning OCT systems, potentially opening doors for clinically friendly ORG probing.
Collapse
Affiliation(s)
- Ewelina Pijewska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Torun, Poland
| | - Pengfei Zhang
- UC Davis Eyepod Imaging Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, USA
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province 116024, China
| | - Michał Meina
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Torun, Poland
| | - Ratheesh K. Meleppat
- UC Davis Eyepod Imaging Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, USA
| | - Maciej Szkulmowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Torun, Poland
| | - Robert J. Zawadzki
- UC Davis Eyepod Imaging Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, USA
- Department of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street Suite 2400 Sacramento, CA 95817, USA
| |
Collapse
|
7
|
A simulation study investigating potential diffusion-based MRI signatures of microstrokes. Sci Rep 2021; 11:14229. [PMID: 34244549 PMCID: PMC8271016 DOI: 10.1038/s41598-021-93503-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Recent studies suggested that cerebrovascular micro-occlusions, i.e. microstokes, could lead to ischemic tissue infarctions and cognitive deficits. Due to their small size, identifying measurable biomarkers of these microvascular lesions remains a major challenge. This work aims to simulate potential MRI signatures combining arterial spin labeling (ASL) and multi-directional diffusion-weighted imaging (DWI). Driving our hypothesis are recent observations demonstrating a radial reorientation of microvasculature around the micro-infarction locus during recovery in mice. Synthetic capillary beds, randomly- and radially-oriented, and optical coherence tomography (OCT) angiograms, acquired in the barrel cortex of mice (n = 5) before and after inducing targeted photothrombosis, were analyzed. Computational vascular graphs combined with a 3D Monte-Carlo simulator were used to characterize the magnetic resonance (MR) response, encompassing the effects of magnetic field perturbations caused by deoxyhemoglobin, and the advection and diffusion of the nuclear spins. We quantified the minimal intravoxel signal loss ratio when applying multiple gradient directions, at varying sequence parameters with and without ASL. With ASL, our results demonstrate a significant difference (p < 0.05) between the signal-ratios computed at baseline and 3 weeks after photothrombosis. The statistical power further increased (p < 0.005) using angiograms measured at week 4. Without ASL, no reliable signal change was found. We found that higher ratios, and accordingly improved significance, were achieved at lower magnetic field strengths (e.g., B0 = 3T) and shorter echo time TE (< 16 ms). Our simulations suggest that microstrokes might be characterized through ASL-DWI sequence, providing necessary insights for posterior experimental validations, and ultimately, future translational trials.
Collapse
|
8
|
Intensity correlation OCT is a classical mimic of quantum OCT providing up to twofold resolution improvement. Sci Rep 2021; 11:11403. [PMID: 34059774 PMCID: PMC8166980 DOI: 10.1038/s41598-021-90837-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/11/2021] [Indexed: 11/28/2022] Open
Abstract
Quantum Optical Coherence Tomography (Q-OCT) uses quantum properties of light to provide several advantages over its classical counterpart, OCT: it achieves a twice better axial resolution with the same spectral bandwidth and it is immune to even orders of dispersion. Since these features are very sought-after in OCT imaging, many hardware and software techniques have been created to mimic the quantum behaviour of light and achieve these features using traditional OCT systems. The most recent, purely algorithmic scheme—an improved version of Intensity Correlation Spectral Domain OCT named ICA-SD-OCT—showed even-order dispersion cancellation and reduction of artefacts. The true capabilities of this method were unfortunately severely undermined, both in terms of its relation to Q-OCT and its main performance parameters. In this work, we provide experimental demonstrations as well as numerical and analytical arguments to show that ICA-SD-OCT is a true classical equivalent of Q-OCT, more specifically its Fourier domain version, and therefore it enables a true two-fold axial resolution improvement. We believe that clarification of all the misconceptions about this very promising algorithm will highlight the great value of this method for OCT and consequently lead to its practical applications for resolution- and quality-enhanced OCT imaging.
Collapse
|
9
|
Kolenderska SM, Vanholsbeeck F, Kolenderski P. Fourier domain quantum optical coherence tomography. OPTICS EXPRESS 2020; 28:29576-29589. [PMID: 33114855 DOI: 10.1364/oe.399913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Quantum optical coherence tomography (Q-OCT) is the non-classical counterpart of optical coherence tomography (OCT), a high-resolution 3D imaging technique based on white-light interferometry. Because Q-OCT uses a source of frequency-entangled photon pairs, not only is the axial resolution not affected by dispersion mismatch in the interferometer but is also inherently improved by a factor of two. Unfortunately, practical applications of Q-OCT are hindered by image-scrambling artefacts and slow acquisition times. Here, we present a theoretical analysis of a novel approach that is free of these problems: Fourier domain Q-OCT (Fd-Q-OCT). Based on a photon pair coincidence detection as in the standard Q-OCT configuration, it also discerns each photon pair by their wavelength. We show that all the information about the internal structures of the object is encoded in the joint spectrum and can be easily retrieved through Fourier transformation. No depth scanning is required, making our technique potentially faster than standard Q-OCT. Finally, we show that the data available in the joint spectrum enables artefact removal and discuss prospective algorithms for doing so.
Collapse
|
10
|
Zhang T, Kho AM, Srinivasan VJ. Water wavenumber calibration for visible light optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200166LR. [PMID: 32935500 PMCID: PMC7490762 DOI: 10.1117/1.jbo.25.9.090501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Visible light optical coherence tomography (OCT) is emerging for spectroscopic and ultrahigh resolution imaging, but challenges remain. Depth-dependent dispersion limits retinal image quality and current correction approaches are cumbersome. Inconsistent group refractive indices during image reconstruction also limit reproducibility. AIM To introduce and evaluate water wavenumber calibration (WWC), which corrects depth-dependent dispersion and provides an accurate depth axis in water. APPROACH Enabled by a visible light OCT spectrometer configuration with a 3- to 4-dB sensitivity roll-off over 1 mm in air across a 90-nm bandwidth, we determine the spectral phase of a 1-mm water cell, an affine function of water wavenumber. Via WWC, we reconstruct visible light OCT human retinal images with 1.3-μm depth resolution in water. RESULTS Images clearly reveal Bruch's membrane, inner plexiform layer lamination, and a thin nerve fiber layer in the temporal parafovea. WWC halves the processing time, while achieving the same image definition as an assumption-free gold standard approach, suggesting that water wavenumber is a suitable proxy for tissue wavenumber. WWC also provides a depth axis in water without explicitly assuming a group refractive index. CONCLUSIONS WWC is a simple method that helps to realize the full potential of visible light OCT.
Collapse
Affiliation(s)
- Tingwei Zhang
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
| | - Aaron M. Kho
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
| | - Vivek J. Srinivasan
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- University of California Davis, School of Medicine, Department of Ophthalmology and Vision Science, Sacramento, California, United States
| |
Collapse
|
11
|
Kolenderska SM, Vanholsbeeck F, Kolenderski P. Quantum-inspired detection for spectral domain optical coherence tomography. OPTICS LETTERS 2020; 45:3443-3446. [PMID: 32630867 DOI: 10.1364/ol.393162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Intensity levels allowed by safety standards (ICNIRP or ANSI) limit the amount of light that can be used in a clinical setting to image highly scattering or absorptive tissues with optical coherence tomography (OCT). To achieve high-sensitivity imaging at low intensity levels, we adapt a detection scheme-which is used in quantum optics for providing information about spectral correlations of photons-into a standard spectral domain OCT system. This detection scheme is based on the concept of dispersive Fourier transformation, where a fiber introduces a wavelength-dependent time delay measured by a single-pixel detector, usually a high-speed photoreceiver. Here, we use a fast superconducting single-photon detector SSPD as a single-pixel detector and obtain images of a glass stack and a slice of onion at the intensity levels of the order of 10 pW. We also provide a formula for a depth-dependent sensitivity falloff in such a detection scheme, which can be treated as a temporal equivalent of diffraction-grating-based spectrometers.
Collapse
|
12
|
Lu Y, Lu X, Zhang C, Marchand PJ, Lesage F. Longitudinal optical coherence tomography imaging of tissue repair and microvasculature regeneration and function after targeted cerebral ischemia. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-15. [PMID: 32285652 PMCID: PMC7152803 DOI: 10.1117/1.jbo.25.4.046002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Understanding how the brain recovers from cerebral tissue and vascular damage after an ischemic event can help develop new therapeutic strategies for the treatment of stroke. AIM We investigated cerebral tissue repair and microvasculature regeneration and function after a targeted ischemic stroke. APPROACH Following photothrombosis occlusion of microvasculature, chronic optical coherence tomography (OCT)-based angiography was used to track ischemic tissue repair and microvasculature regeneration at three different cortical depths and up to 28 days in awake animals. Capillary network orientation analysis was performed to study the structural pattern of newly formed microvasculature. Based on the time-resolved OCT-angiography, we also investigated capillary stalling, which is likely related to ischemic stroke-induced inflammation. RESULTS Deeper cerebral tissue was found to have a larger ischemic area than shallower regions at any time point during the course of poststroke recovery, which suggests that cerebral tissue located deep in the cortex is more vulnerable. Regenerated microvasculature had a highly organized pattern at all cortical depths with a higher degree of structural reorganization in deeper regions. Additionally, capillary stalling event analysis revealed that cerebral ischemia augmented stalling events considerably. CONCLUSION Longitudinal OCT angiography reveals that regenerated capillary network has a highly directional pattern and an increased density and incidence of capillary stalling event.
Collapse
Affiliation(s)
- Yuankang Lu
- Laboratoire d’Imagerie Optique et Moléculaire, École Polytechnique de Montréal, Montréal, Québec, Canada
| | - Xuecong Lu
- Laboratoire d’Imagerie Optique et Moléculaire, École Polytechnique de Montréal, Montréal, Québec, Canada
| | - Cong Zhang
- Laboratoire d’Imagerie Optique et Moléculaire, École Polytechnique de Montréal, Montréal, Québec, Canada
- Université de Montreal, Montréal, Québec, Canada
| | - Paul J. Marchand
- Laboratoire d’Imagerie Optique et Moléculaire, École Polytechnique de Montréal, Montréal, Québec, Canada
| | - Frédéric Lesage
- Laboratoire d’Imagerie Optique et Moléculaire, École Polytechnique de Montréal, Montréal, Québec, Canada
- Institut de Cardiologie de Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Attendu X, Ruis RM, Boudoux C, van Leeuwen TG, Faber DJ. Simple and robust calibration procedure for k-linearization and dispersion compensation in optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31087833 PMCID: PMC6992960 DOI: 10.1117/1.jbo.24.5.056001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/19/2019] [Indexed: 05/22/2023]
Abstract
In Fourier-domain optical coherence tomography (FD-OCT), proper signal sampling and dispersion compensation are essential steps to achieve optimal axial resolution. These calibration steps can be performed through numerical signal processing, but require calibration information about the system that may require lengthy and complex measurement protocols. We report a highly robust calibration procedure that can simultaneously determine correction vectors for nonlinear wavenumber sampling and dispersion compensation. The proposed method requires only two simple mirror measurements and no prior knowledge about the system's illumination source or detection scheme. This method applies to both spectral domain and swept-source OCT systems. Furthermore, it may be implemented as a low-cost fail-safe to validate the proper function of calibration hardware such as k-clocks. We demonstrate the method's simple implementation, effectiveness, and robustness on both types of OCT systems.
Collapse
Affiliation(s)
- Xavier Attendu
- University of Amsterdam, Amsterdam University Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Polytechnique Montreal, Centre d’Optique Photonique et Lasers, Department of Engineering Physics, Montreal, Canada
- Address all correspondence to Xavier Attendu, E-mail:
| | - Roosje M. Ruis
- University of Amsterdam, Amsterdam University Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Caroline Boudoux
- Polytechnique Montreal, Centre d’Optique Photonique et Lasers, Department of Engineering Physics, Montreal, Canada
| | - Ton G. van Leeuwen
- University of Amsterdam, Amsterdam University Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Dirk J. Faber
- University of Amsterdam, Amsterdam University Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Kolenderska SM, Bräuer B, Vanholsbeeck F. Dispersion mapping as a simple postprocessing step for Fourier domain Optical Coherence Tomography data. Sci Rep 2018; 8:9244. [PMID: 29915367 PMCID: PMC6006180 DOI: 10.1038/s41598-018-27552-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
Optical Coherence Tomography (OCT) was originally conceived as a volumetric imaging method. Quickly, OCT images went beyond structural data and started to provide functional information about an object enabling for example visualization of blood flow or tissue elasticity. Minimal or no need for system alterations make functional OCT techniques useful in performing multimodal imaging, where differently contrasted images are produced in a single examination. We propose a method that further extends the current capabilities of OCT and requires no modifications to the system. Our algorithm provides information about the sample's Group Velocity Dispersion (GVD) and can be easily applied to any OCT dataset acquired with a Fourier domain system. GVD is calculated from the difference in material's optical thickness measured from two images obtained for different spectral ranges. Instead of using two separate light sources, we propose to apply a filter-based, numerical procedure that synthesizes two spectra from one broadband spectrum. We discuss the limitations of the method and present GVD values for BK7 and sapphire and ocular media: cornea and aqueous humour of a rat eye. Results corroborate previous measurements using two different light sources.
Collapse
Affiliation(s)
- Sylwia M Kolenderska
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, Auckland, 1142, New Zealand.
| | - Bastian Bräuer
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, Auckland, 1142, New Zealand
| | - Frédérique Vanholsbeeck
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, Auckland, 1142, New Zealand
| |
Collapse
|
15
|
Uribe-Patarroyo N, Kassani SH, Villiger M, Bouma BE. Robust wavenumber and dispersion calibration for Fourier-domain optical coherence tomography. OPTICS EXPRESS 2018. [PMID: 29715866 DOI: 10.6084/m9.figshare.5787840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Many Fourier-domain optical coherence tomography (FD-OCT) systems sample the interference fringes with a non-uniform wavenumber (k) interval, introducing a chirp to the signal that depends on the path length difference underlying each fringe. A dispersion imbalance between sample and reference arms also generates a chirp in the fringe signal which, in contrast, is independent of depth. Fringe interpolation to obtain a signal linear in k and compensate dispersion imbalance is critical to achieving bandwidth-limited axial resolution. In this work, we propose an optimization-based algorithm to perform robust and automated calibration of FD-OCT systems, recovering both the interpolation function and the dispersion imbalance. Our technique relies on the fact that the unique function that correctly linearizes the fringe data in k space produces a depth-independent chirp. The calibration procedure requires experimental data corresponding to a single reflector at various depth locations, which can easily be obtained by acquiring data while moving a sample mirror in depth. We have tested both spectral domain OCT and swept source OCT systems with various nonlinearities. Results indicate that the proposed calibration method has excellent performance on a wide range of data sets and enables nearly constant resolution at all imaging depths. An implementation of the algorithm is available online.
Collapse
|
16
|
Uribe-Patarroyo N, Kassani SH, Villiger M, Bouma BE. Robust wavenumber and dispersion calibration for Fourier-domain optical coherence tomography. OPTICS EXPRESS 2018; 26:9081-9094. [PMID: 29715866 PMCID: PMC6005677 DOI: 10.1364/oe.26.009081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 05/20/2023]
Abstract
Many Fourier-domain optical coherence tomography (FD-OCT) systems sample the interference fringes with a non-uniform wavenumber (k) interval, introducing a chirp to the signal that depends on the path length difference underlying each fringe. A dispersion imbalance between sample and reference arms also generates a chirp in the fringe signal which, in contrast, is independent of depth. Fringe interpolation to obtain a signal linear in k and compensate dispersion imbalance is critical to achieving bandwidth-limited axial resolution. In this work, we propose an optimization-based algorithm to perform robust and automated calibration of FD-OCT systems, recovering both the interpolation function and the dispersion imbalance. Our technique relies on the fact that the unique function that correctly linearizes the fringe data in k space produces a depth-independent chirp. The calibration procedure requires experimental data corresponding to a single reflector at various depth locations, which can easily be obtained by acquiring data while moving a sample mirror in depth. We have tested both spectral domain OCT and swept source OCT systems with various nonlinearities. Results indicate that the proposed calibration method has excellent performance on a wide range of data sets and enables nearly constant resolution at all imaging depths. An implementation of the algorithm is available online.
Collapse
Affiliation(s)
- Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital,40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Sahar Hosseinzadeh Kassani
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital,40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital,40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Brett E. Bouma
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital,40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
17
|
Moon S, Qu Y, Chen Z. Characterization of spectral-domain OCT with autocorrelation interference response for axial resolution performance. OPTICS EXPRESS 2018; 26:7253-7269. [PMID: 29609412 PMCID: PMC6005678 DOI: 10.1364/oe.26.007253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present a class of novel system characterization methods for spectral-domain optical coherence tomography (SD-OCT) particularly on getting optimized axial resolution performance. Our schemes uniquely utilize the autocorrelation interference response, also known as the self-interference product, which is generated by the optical fields from the imaging sample in automatic interferences. In our methods, an autocorrelation-inducing calibration sample was prepared which was made by sandwiching glass plates. OCT images of the calibration sample were captured by an SD-OCT system under testing. And the image data were processed to find various system characteristics based on the unique properties of autocorrelation interferograms, free of dispersion- and polarization-involved modulations. First, we could analyze the sampling characteristic of the SD-OCT's spectrometer for spectral calibration that enables accurate linear-k resampling of detected spectral fringes. Second, we could obtain the systematic polarization properties for quantifying their impact on the achieved axial resolutions. We found that our methods based on the autocorrelation response provide an easy way of self-characterization and self-validation that is useful in optimizing and maintaining axial resolution performances. It was found very attractive that a variety of system characteristics can be obtained in a single-shot measurement without any increased system complexity.
Collapse
Affiliation(s)
- Sucbei Moon
- Beckman Laser Institute, Univ. of California, Irvine; 1002 Health Sciences, Irvine, CA 92617, USA
- Department of Physics, Kookmin Univ.; 77 Jeonneung-ro, Seoul 02707, South Korea
| | - Yueqiao Qu
- Beckman Laser Institute, Univ. of California, Irvine; 1002 Health Sciences, Irvine, CA 92617, USA
- Department of Biomedical Engineering, Univ. of California, Irvine; 5200 Engineering Hall, Irvine, CA 92697, USA
| | - Zhongping Chen
- Beckman Laser Institute, Univ. of California, Irvine; 1002 Health Sciences, Irvine, CA 92617, USA
- Department of Biomedical Engineering, Univ. of California, Irvine; 5200 Engineering Hall, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Abstract
Imaging of living cells based on traditional fluorescence and confocal laser scanning microscopy has delivered an enormous amount of information critical for understanding biological processes in single cells. However, the requirement for a high numerical aperture and fluorescent markers still limits researchers’ ability to visualize the cellular architecture without causing short- and long-term photodamage. Optical coherence microscopy (OCM) is a promising alternative that circumvents the technical limitations of fluorescence imaging techniques and provides unique access to fundamental aspects of early embryonic development, without the requirement for sample pre-processing or labeling. In the present paper, we utilized the internal motion of cytoplasm, as well as custom scanning and signal processing protocols, to effectively reduce the speckle noise typical for standard OCM and enable high-resolution intracellular time-lapse imaging. To test our imaging system we used mouse and pig oocytes and embryos and visualized them through fertilization and the first embryonic division, as well as at selected stages of oogenesis and preimplantation development. Because all morphological and morphokinetic properties recorded by OCM are believed to be biomarkers of oocyte/embryo quality, OCM may represent a new chapter in imaging-based preimplantation embryo diagnostics.
Collapse
|