1
|
Halevi A, Farah N, Ozana N, Cohen S, Shoval A, Shefi O, Mandel Y, Zalevsky Z. Remote photonic sensing of action potential in mammalian nerve cells via histogram-based analysis of temporal spatial acoustic vibrations. OPTICS EXPRESS 2022; 30:15512-15523. [PMID: 35473269 DOI: 10.1364/oe.449006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Label free and remote action potential detection in neurons can be of great importance in the neuroscience research field. This paper presents a novel label free imaging modality based on the detection of temporal vibrations of speckle patterns illuminating the sample. We demonstrated the feasibility of detecting action potentials originating from spontaneous and stimulated activity in cortical cell culture. The spatiotemporal vibrations of isolated cortical cells were extracted by illuminating the culture with a laser beam while the vibrations of the random back scattered secondary speckle patterns are captured by a camera. The postulated action potentials were estimated following correlation-based analysis on the captured vibrations, where the variance deviation of the signal from a Gaussian distribution is directly associated with the action potential events. The technique was validated in a series of experiments in which the optical signals were acquired concurrently with microelectrode array (MEA) recordings. Our results demonstrate the ability of detecting action potential events in mammalian cells remotely via extraction of acoustic vibrations.
Collapse
|
2
|
Tomczewski S, Węgrzyn P, Borycki D, Auksorius E, Wojtkowski M, Curatolo A. Light-adapted flicker optoretinograms captured with a spatio-temporal optical coherence-tomography (STOC-T) system. BIOMEDICAL OPTICS EXPRESS 2022; 13:2186-2201. [PMID: 35519256 PMCID: PMC9045926 DOI: 10.1364/boe.444567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
For many years electroretinography (ERG) has been used for obtaining information about the retinal physiological function. More recently, a new technique called optoretinography (ORG) has been developed. In one form of this technique, the physiological response of retinal photoreceptors to visible light, resulting in a nanometric photoreceptor optical path length change, is measured by phase-sensitive optical coherence tomography (OCT). To date, a limited number of studies with phase-based ORG measured the retinal response to a flickering light stimulation. In this work, we use a spatio-temporal optical coherence tomography (STOC-T) system to capture optoretinograms with a flickering stimulus over a 1.7 × 0.85 mm2 area of a light-adapted retina located between the fovea and the optic nerve. We show that we can detect statistically-significant differences in the photoreceptor optical path length (OPL) modulation amplitudes in response to different flicker frequencies and with better signal to noise ratios (SNRs) than for a dark-adapted eye. We also demonstrate the ability to spatially map such response to a patterned stimulus with light stripes flickering at different frequencies, highlighting the prospect of characterizing the spatially-resolved temporal-frequency response of the retina with ORG.
Collapse
Affiliation(s)
- Sławomir Tomczewski
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230, Warszawa, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
- Equal contributors
| | - Piotr Węgrzyn
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230, Warszawa, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland
- Equal contributors
| | - Dawid Borycki
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230, Warszawa, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Egidijus Auksorius
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230, Warszawa, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
- Center for Physical Sciences and Technology (FTMC), Saulėtekio al. 3, LT-10257 Vilnius, Lithuania
| | - Maciej Wojtkowski
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230, Warszawa, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Andrea Curatolo
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230, Warszawa, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
3
|
Tang J, Cheng X, Kilic K, Devor A, Lee J, Boas DA. Imaging localized fast optical signals of neural activation with optical coherence tomography in awake mice. OPTICS LETTERS 2021; 46:1744-1747. [PMID: 33793533 PMCID: PMC8086197 DOI: 10.1364/ol.411897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/10/2021] [Indexed: 05/05/2023]
Abstract
We report optical coherence tomography (OCT) imaging of localized fast optical signals (FOSs) arising from whisker stimulation in awake mice. The activated voxels were identified by fitting the OCT intensity signal time course with a response function over a time scale of a few hundred milliseconds after the whisker stimulation. The significantly activated voxels were shown to be localized to the expected brain region for whisker stimulation. The ability to detect functional stimulus-evoked, depth-resolved FOS with intrinsic contrast from the cortex provides a new tool for neural activity studies.
Collapse
Affiliation(s)
- Jianbo Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Xiaojun Cheng
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Kivilcim Kilic
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Anna Devor
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Jonghwan Lee
- School of Engineering, Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, USA
| | - David A. Boas
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
4
|
Pandiyan VP, Jiang X, Maloney-Bertelli A, Kuchenbecker JA, Sharma U, Sabesan R. High-speed adaptive optics line-scan OCT for cellular-resolution optoretinography. BIOMEDICAL OPTICS EXPRESS 2020; 11:5274-5296. [PMID: 33014614 PMCID: PMC7510866 DOI: 10.1364/boe.399034] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 05/15/2023]
Abstract
Optoretinography-the non-invasive, optical imaging of light-induced functional activity in the retina-stands to provide a critical biomarker for testing the safety and efficacy of new therapies as well as their rapid translation to the clinic. Optical phase change in response to light, as readily accessible in phase-resolved OCT, offers a path towards all-optical imaging of retinal function. However, typical human eye motion adversely affects phase stability. In addition, recording fast light-induced retinal events necessitates high-speed acquisition. Here, we introduce a high-speed line-scan spectral domain OCT with adaptive optics (AO), aimed at volumetric imaging and phase-resolved acquisition of retinal responses to light. By virtue of parallel acquisition of an entire retinal cross-section (B-scan) in a single high-speed camera frame, depth-resolved tomograms at speeds up to 16 kHz were achieved with high sensitivity and phase stability. To optimize spectral and spatial resolution, an anamorphic detection paradigm was introduced, enabling improved light collection efficiency and signal roll-off compared to traditional methods. The benefits in speed, resolution and sensitivity were exemplified in imaging nanometer-millisecond scale light-induced optical path length changes in cone photoreceptor outer segments. With 660 nm stimuli, individual cone responses readily segregated into three clusters, corresponding to long, middle, and short-wavelength cones. Recording such optoretinograms on spatial scales ranging from individual cones, to 100 µm-wide retinal patches offers a robust and sensitive biomarker for cone function in health and disease.
Collapse
Affiliation(s)
- Vimal Prabhu Pandiyan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Xiaoyun Jiang
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Aiden Maloney-Bertelli
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - James A Kuchenbecker
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Utkarsh Sharma
- Catapult Sky LLC, 34116 Blue Heron Dr, Solon, OH 44139, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
| |
Collapse
|
5
|
Tang P, Li Y, Rakymzhan A, Xie Z, Wang RK. Measurement and visualization of stimulus-evoked tissue dynamics in mouse barrel cortex using phase-sensitive optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:699-710. [PMID: 32206393 PMCID: PMC7041479 DOI: 10.1364/boe.381332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 01/02/2020] [Indexed: 05/24/2023]
Abstract
We describe a method to measure tissue dynamics in mouse barrel cortex during functional activation via phase-sensitive optical coherence tomography (PhS-OCT). The method measures the phase changes in OCT signals, which are induced by the tissue volume change, upon which to localize the activated tissue region. Phase unwrapping, compensation and normalization are applied to increase the dynamic range of the OCT phase detection. To guide the OCT scanning, intrinsic optical signal imaging (IOSI) system equipped with a green light laser source (532 nm) is integrated with the PhS-OCT system to provide a full field time-lapsed images of the reflectance that is used to identify the transversal 2D localized tissue response in the mouse brain. The OCT results show a localized decrease in the OCT phase signal in the activated region of the mouse brain tissue. The decrease in the phase signal may be originated from the brain tissue compression caused by the vasodilatation in the activated region. The activated region revealed in the cross-sectional OCT image is consistent with that identified by the IOSI imaging, indicating the phase change in the OCT signals may associate with the changes in the corresponding hemodynamics. In vivo localized tissue dynamics in the barrel cortex at depth during whisker stimulation is observed and monitored in this study.
Collapse
|
6
|
Zhang Y, Yao L, Yang F, Yang S, Edathodathil A, Xi W, Roe AW, Li P. INS-fOCT: a label-free, all-optical method for simultaneously manipulating and mapping brain function. NEUROPHOTONICS 2020; 7:015014. [PMID: 32258220 PMCID: PMC7108754 DOI: 10.1117/1.nph.7.1.015014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Significance: Current approaches to stimulating and recording from the brain have combined electrical or optogenetic stimulation with recording approaches, such as two-photon, electrophysiology (EP), and optical intrinsic signal imaging (OISI). However, we lack a label-free, all-optical approach with high spatial and temporal resolution. Aim: To develop a label-free, all-optical method that simultaneously manipulates and images brain function using pulsed near-infrared light (INS) and functional optical coherence tomography (fOCT), respectively. Approach: We built a coregistered INS, fOCT, and OISI system. OISI and EP recordings were employed to validate the fOCT signals. Results: The fOCT signal was reliable and regional, and the area of fOCT signal corresponded with the INS-activated region. The fOCT signal was in synchrony with the INS onset time with a delay of ∼ 30 ms . The magnitude of fOCT signal exhibited a linear correlation with the INS radiant exposure. The significant correlation between the fOCT signal and INS was further supported by OISI and EP recordings. Conclusions: The proposed fiber-based, all-optical INS-fOCT method allows simultaneous stimulation and mapping without the risk of interchannel cross-talk and the requirement of contrast injection and viral transfection and offers a deep penetration depth and high resolution.
Collapse
Affiliation(s)
- Ying Zhang
- Zhejiang University, College of Optical Science and Engineering, State Key Lab of Modern Optical Instrumentation, Hangzhou, China
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, Zhejiang, China
| | - Lin Yao
- Zhejiang University, College of Optical Science and Engineering, State Key Lab of Modern Optical Instrumentation, Hangzhou, China
| | - Fen Yang
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, Zhejiang, China
| | - Shanshan Yang
- Zhejiang University, College of Optical Science and Engineering, State Key Lab of Modern Optical Instrumentation, Hangzhou, China
| | - Akshay Edathodathil
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, Zhejiang, China
| | - Wang Xi
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, Zhejiang, China
| | - Anna Wang Roe
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang University, Key Laboratory of Biomedical Engineering of Ministry of Education, Hangzhou, Zhejiang, China
- Oregon Health & Sciences University, Oregon National Primate Research Center, Division of Neuroscience, Beaverton, Oregon, United States
| | - Peng Li
- Zhejiang University, College of Optical Science and Engineering, State Key Lab of Modern Optical Instrumentation, Hangzhou, China
- Zhejiang University, International Research Center for Advanced Photonics, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Wide-Field Functional Microscopy of Peripheral Nerve Injury and Regeneration. Sci Rep 2018; 8:14004. [PMID: 30228335 PMCID: PMC6143548 DOI: 10.1038/s41598-018-32346-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Severe peripheral nerve injuries often result in partial repair and lifelong disabilities in patients. New surgical techniques and better graft tissues are being studied to accelerate regeneration and improve functional recovery. Currently, limited tools are available to provide in vivo monitoring of changes in nerve physiology such as myelination and vascularization, and this has impeded the development of new therapeutic options. We have developed a wide-field and label-free functional microscopy platform based on angiographic and vectorial birefringence methods in optical coherence tomography (OCT). By incorporating the directionality of the birefringence, which was neglected in the previously reported polarization-sensitive OCT techniques for nerve imaging, vectorial birefringence contrast reveals internal nerve microanatomy and allows for quantification of local myelination with superior sensitivity. Advanced OCT angiography is applied in parallel to image the three-dimensional vascular networks within the nerve over wide-fields. Furthermore, by combining vectorial birefringence and angiography, intraneural vessels can be discriminated from those of the surrounding tissues. The technique is used to provide longitudinal imaging of myelination and revascularization in the rodent sciatic nerve model, i.e. imaged at certain sequential time-points during regeneration. The animals were exposed to either crush or transection injuries, and in the case of transection, were repaired using an autologous nerve graft or acellular nerve allograft. Such label-free functional imaging by the platform can provide new insights into the mechanisms that limit regeneration and functional recovery, and may ultimately provide intraoperative assessment in human subjects.
Collapse
|
8
|
The State of the NIH BRAIN Initiative. J Neurosci 2018; 38:6427-6438. [PMID: 29921715 DOI: 10.1523/jneurosci.3174-17.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
The BRAIN Initiative arose from a grand challenge to "accelerate the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought." The BRAIN Initiative is a public-private effort focused on the development and use of powerful tools for acquiring fundamental insights about how information processing occurs in the central nervous system (CNS). As the Initiative enters its fifth year, NIH has supported >500 principal investigators, who have answered the Initiative's challenge via hundreds of publications describing novel tools, methods, and discoveries that address the Initiative's seven scientific priorities. We describe scientific advances produced by individual laboratories, multi-investigator teams, and entire consortia that, over the coming decades, will produce more comprehensive and dynamic maps of the brain, deepen our understanding of how circuit activity can produce a rich tapestry of behaviors, and lay the foundation for understanding how its circuitry is disrupted in brain disorders. Much more work remains to bring this vision to fruition, and the National Institutes of Health continues to look to the diverse scientific community, from mathematics, to physics, chemistry, engineering, neuroethics, and neuroscience, to ensure that the greatest scientific benefit arises from this unique research Initiative.
Collapse
|
9
|
Batabyal S, Satpathy S, Bui L, Kim YT, Mohanty S, Bachoo R, Davé DP. Label-free optical detection of action potential in mammalian neurons. BIOMEDICAL OPTICS EXPRESS 2017; 8:3700-3713. [PMID: 28856044 PMCID: PMC5560835 DOI: 10.1364/boe.8.003700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 05/08/2023]
Abstract
We describe an optical technique for label-free detection of the action potential in cultured mammalian neurons. Induced morphological changes due to action potential propagation in neurons are optically interrogated with a phase sensitive interferometric technique. Optical recordings composed of signal pulses mirror the electrical spike train activity of individual neurons in a network. The optical pulses are transient nanoscale oscillatory changes in the optical path length of varying peak magnitude and temporal width. Exogenous application of glutamate to cortical neuronal cultures produced coincident increase in the electrical and optical activity; both were blocked by application of a Na-channel blocker, Tetrodotoxin. The observed transient change in optical path length in a single optical pulse is primarily due to physical fluctuations of the neuronal cell membrane mediated by a yet unknown electromechanical transduction phenomenon. Our analysis suggests a traveling surface wave in the neuronal cell membrane is responsible for the measured optical signal pulses.
Collapse
Affiliation(s)
- Subrata Batabyal
- Nanoscope Technologies, Arlington, TX, USA
- Nanoscope Technologies, Arlington, TX, USA
- Equal Contribution
| | - Sarmishtha Satpathy
- Department of Electrical Engineering, University of Texas at Arlington, TX, USA
- Equal Contribution
| | - Loan Bui
- Department of Bioengineering, University of Texas at Arlington, TX, USA
| | - Young-Tae Kim
- Department of Bioengineering, University of Texas at Arlington, TX, USA
| | | | - Robert Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Digant P Davé
- Department of Bioengineering, University of Texas at Arlington, TX, USA
- Advance Imaging Research Centre, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Izatt JA, Boppart S, Bouma B, de Boer J, Drexler W, Li X, Yasuno Y. Introduction to the feature issue on the 25 year anniversary of optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:3289-3291. [PMID: 28717567 PMCID: PMC5508828 DOI: 10.1364/boe.8.003289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Indexed: 06/07/2023]
Abstract
The guest editors introduce a feature issue commemorating the 25th anniversary of optical coherence tomography.
Collapse
Affiliation(s)
| | - Stephen Boppart
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brett Bouma
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Johannes de Boer
- Department of Physics and Astronomy, and LaserLaB Amsterdam, VU University, de Boelelaan 1081 HV Amsterdam, The Netherlands
- Department of Ophthalmology, VU Medical Center, Amsterdam, The Netherlands
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Austria
| | - Xingde Li
- Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|