1
|
Hu J, He P, Zhao F, Lin W, Xue C, Chen J, Yu Z, Ran Y, Meng Y, Hong X, Shum PP, Shao L. Magnetic microspheres enhanced peanut structure cascaded lasso shaped fiber laser biosensor for cancer marker-CEACAM5 detection in serum. Talanta 2024; 271:125625. [PMID: 38244308 DOI: 10.1016/j.talanta.2024.125625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
The detection of trace cancer markers in body fluids such as blood/serum is crucial for cancer diseases screening and treatment, which requires high sensitivity and specificity of biosensors. In this study, a peanut structure cascaded lasso (PSCL) shaped fiber sensing probe based on fiber laser demodulation method was proposed to specifically detect the carcinoembryonic antigen related cell adhesion molecules 5 (CEACAM5) protein in serum. Thanks for the narrow linewidth and high signal-to-noise ratio (SNR) of the laser spectrum, it is easier to distinguish small spectral changes than interference spectrum. Adding the antibody modified magnetic microspheres (MMS) to form the sandwich structure of "antibody-antigen-antibody-MMS", and amplified the response caused by biomolecular binding. The limit of detection (LOD) for CEACAM5 in buffer could reach 0.11 ng/mL. Considering the common threshold of 5 ng/mL for CEA during medical screening and the cut off limit of 2.5 ng/mL for some kits, the LOD of proposed biosensor meets the actual needs. Human serum samples from a hospital were used to validate the real sensing capability of proposed biosensor. The deviation between the measured value in various serum samples and the clinical value ranged from 1.9 to 9.8 %. This sensing scheme holds great potential to serve as a point of care testing (POCT) device and extend to more biosensing applications.
Collapse
Affiliation(s)
- Jie Hu
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Panpan He
- Medcaptain Medical Technology Co., Ltd., Shenzhen, 518055, China.
| | - Fang Zhao
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Weihao Lin
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chenlong Xue
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jinna Chen
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zhiguang Yu
- Medcaptain Medical Technology Co., Ltd., Shenzhen, 518055, China.
| | - Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China.
| | - Yue Meng
- Department of Clinical Laboratory, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 511436, China.
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| | - Perry Ping Shum
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Liyang Shao
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Hu J, Song E, Liu Y, Yang Q, Sun J, Chen J, Meng Y, Jia Y, Yu Z, Ran Y, Shao L, Shum PP. Fiber Laser-Based Lasso-Shaped Biosensor for High Precision Detection of Cancer Biomarker-CEACAM5 in Serum. BIOSENSORS 2023; 13:674. [PMID: 37504073 PMCID: PMC10377356 DOI: 10.3390/bios13070674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Detection of trace tumor markers in blood/serum is essential for the early screening and prognosis of cancer diseases, which requires high sensitivity and specificity of the assays and biosensors. A variety of label-free optical fiber-based biosensors has been developed and yielded great opportunities for Point-of-Care Testing (POCT) of cancer biomarkers. The fiber biosensor, however, suffers from a compromise between the responsivity and stability of the sensing signal, which would deteriorate the sensing performance. In addition, the sophistication of sensor preparation hinders the reproduction and scale-up fabrication. To address these issues, in this study, a straightforward lasso-shaped fiber laser biosensor was proposed for the specific determination of carcinoembryonic antigen (CEA)-related cell adhesion molecules 5 (CEACAM5) protein in serum. Due to the ultra-narrow linewidth of the laser, a very small variation of lasing signal caused by biomolecular bonding can be clearly distinguished via high-resolution spectral analysis. The limit of detection (LOD) of the proposed biosensor could reach 9.6 ng/mL according to the buffer test. The sensing capability was further validated by a human serum-based cancer diagnosis trial, enabling great potential for clinical use. The high reproduction of fabrication allowed the mass production of the sensor and extended its utility to a broader biosensing field.
Collapse
Affiliation(s)
- Jie Hu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Enlai Song
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Yuhui Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiaochu Yang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Junhui Sun
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinna Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yue Meng
- Department of Clinical Laboratory, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 511436, China
| | - Yanwei Jia
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, Faculty of Science and Technology-ECE, Faculty of Health Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Zhiguang Yu
- Medcaptain Medical Technology Co., Ltd., Shenzhen 518055, China
| | - Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Liyang Shao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Perry Ping Shum
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Breglio G, Bernini R, Berruti GM, Bruno FA, Buontempo S, Campopiano S, Catalano E, Consales M, Coscetta A, Cutolo A, Cutolo MA, Di Palma P, Esposito F, Fienga F, Giordano M, Iele A, Iadicicco A, Irace A, Janneh M, Laudati A, Leone M, Maresca L, Marrazzo VR, Minardo A, Pisco M, Quero G, Riccio M, Srivastava A, Vaiano P, Zeni L, Cusano A. Innovative Photonic Sensors for Safety and Security, Part III: Environment, Agriculture and Soil Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:3187. [PMID: 36991894 PMCID: PMC10053851 DOI: 10.3390/s23063187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
In order to complete this set of three companion papers, in this last, we focus our attention on environmental monitoring by taking advantage of photonic technologies. After reporting on some configurations useful for high precision agriculture, we explore the problems connected with soil water content measurement and landslide early warning. Then, we concentrate on a new generation of seismic sensors useful in both terrestrial and under water contests. Finally, we discuss a number of optical fiber sensors for use in radiation environments.
Collapse
Affiliation(s)
- Giovanni Breglio
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
- European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
| | - Romeo Bernini
- Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Consiglio Nazionale delle Ricerche, Via Diocleziano 328, 81024 Napoli, Italy
| | - Gaia Maria Berruti
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Francesco Antonio Bruno
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Salvatore Buontempo
- European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
- National Institute for Nuclear Physics (INFN), 80125 Napoli, Italy
| | - Stefania Campopiano
- Dipartimento di Ingegneria, Università Degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Ester Catalano
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
- Optosensing Ltd., Via Carlo de Marco 69, 80137 Napoli, Italy
| | - Marco Consales
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Agnese Coscetta
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Antonello Cutolo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Maria Alessandra Cutolo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Pasquale Di Palma
- Dipartimento di Ingegneria, Università Degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Flavio Esposito
- Dipartimento di Ingegneria, Università Degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Francesco Fienga
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
- European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
| | - Michele Giordano
- Istituto per i Polimeri, Compositi e Biomateriali Consiglio Nazionale delle Ricerche, Via Enrico Fermi 1, 80055 Portici, Italy
| | - Antonio Iele
- CERICT SCARL, CNOS Center, Viale Traiano, Palazzo ex Poste, 82100 Benevento, Italy
| | - Agostino Iadicicco
- Dipartimento di Ingegneria, Università Degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Andrea Irace
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Mohammed Janneh
- CERICT SCARL, CNOS Center, Viale Traiano, Palazzo ex Poste, 82100 Benevento, Italy
| | | | - Marco Leone
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Luca Maresca
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Vincenzo Romano Marrazzo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
- European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
| | - Aldo Minardo
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Marco Pisco
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Giuseppe Quero
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Michele Riccio
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Anubhav Srivastava
- Dipartimento di Ingegneria, Università Degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Patrizio Vaiano
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Luigi Zeni
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
- Optosensing Ltd., Via Carlo de Marco 69, 80137 Napoli, Italy
| | - Andrea Cusano
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| |
Collapse
|
4
|
Minardo A, Bernini R, Berruti GM, Breglio G, Bruno FA, Buontempo S, Campopiano S, Catalano E, Consales M, Coscetta A, Cusano A, Cutolo MA, Di Palma P, Esposito F, Fienga F, Giordano M, Iele A, Iadicicco A, Irace A, Janneh M, Laudati A, Leone M, Maresca L, Marrazzo VR, Pisco M, Quero G, Riccio M, Srivastava A, Vaiano P, Zeni L, Cutolo A. Innovative Photonic Sensors for Safety and Security, Part I: Fundamentals, Infrastructural and Ground Transportations. SENSORS (BASEL, SWITZERLAND) 2023; 23:2558. [PMID: 36904762 PMCID: PMC10007142 DOI: 10.3390/s23052558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Our group, involving researchers from different universities in Campania, Italy, has been working for the last twenty years in the field of photonic sensors for safety and security in healthcare, industrial and environment applications. This is the first in a series of three companion papers. In this paper, we introduce the main concepts of the technologies employed for the realization of our photonic sensors. Then, we review our main results concerning the innovative applications for infrastructural and transportation monitoring.
Collapse
Affiliation(s)
- Aldo Minardo
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Romeo Bernini
- Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Consiglio Nazionale delle Ricerche, Via Diocleziano 328, 81024 Napoli, Italy
| | - Gaia Maria Berruti
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Giovanni Breglio
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Francesco Antonio Bruno
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Salvatore Buontempo
- National Institute for Nuclear Physics (INFN), 80125 Napoli, Italy
- European Organization for Nuclear Research (CERN), CH-1211 Geneva, Switzerland
| | - Stefania Campopiano
- Dipartimento di Ingegneria, Università degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Ester Catalano
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
- Optosensing Ltd., Via Carlo de Marco 69, 80137 Napoli, Italy
| | - Marco Consales
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Agnese Coscetta
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Andrea Cusano
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Maria Alessandra Cutolo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Pasquale Di Palma
- Dipartimento di Ingegneria, Università degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Flavio Esposito
- Dipartimento di Ingegneria, Università degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Francesco Fienga
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Michele Giordano
- Istituto per i Polimeri, Compositi e Biomateriali Consiglio Nazionale delle Ricerche via Enrico Fermi 1, 80055 Portici, Italy
| | - Antonio Iele
- CERICT SCARL, CNOS Center, Viale Traiano, Palazzo ex Poste, 82100 Benevento, Italy
| | - Agostino Iadicicco
- Dipartimento di Ingegneria, Università degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Andrea Irace
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Mohammed Janneh
- CERICT SCARL, CNOS Center, Viale Traiano, Palazzo ex Poste, 82100 Benevento, Italy
| | | | - Marco Leone
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Luca Maresca
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Vincenzo Romano Marrazzo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Marco Pisco
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Giuseppe Quero
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Michele Riccio
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Anubhav Srivastava
- Dipartimento di Ingegneria, Università degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Patrizio Vaiano
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Luigi Zeni
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
- Optosensing Ltd., Via Carlo de Marco 69, 80137 Napoli, Italy
| | - Antonello Cutolo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| |
Collapse
|
5
|
Cutolo A, Bernini R, Berruti GM, Breglio G, Bruno FA, Buontempo S, Catalano E, Consales M, Coscetta A, Cusano A, Cutolo MA, Di Palma P, Esposito F, Fienga F, Giordano M, Iele A, Iadicicco A, Irace A, Janneh M, Laudati A, Leone M, Maresca L, Marrazzo VR, Minardo A, Pisco M, Quero G, Riccio M, Srivastava A, Vaiano P, Zeni L, Campopiano S. Innovative Photonic Sensors for Safety and Security, Part II: Aerospace and Submarine Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:2417. [PMID: 36904622 PMCID: PMC10007474 DOI: 10.3390/s23052417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The employability of photonics technology in the modern era's highly demanding and sophisticated domain of aerospace and submarines has been an appealing challenge for the scientific communities. In this paper, we review our main results achieved so far on the use of optical fiber sensors for safety and security in innovative aerospace and submarine applications. In particular, recent results of in-field applications of optical fiber sensors in aircraft monitoring, from a weight and balance analysis to vehicle Structural Health Monitoring (SHM) and Landing Gear (LG) monitoring, are presented and discussed. Moreover, underwater fiber-optic hydrophones are presented from the design to marine application.
Collapse
Affiliation(s)
- Antonello Cutolo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Romeo Bernini
- Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Consiglio Nazionale delle Ricerche, Via Diocleziano 328, 81024 Napoli, Italy
| | - Gaia Maria Berruti
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Giovanni Breglio
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
- European Organization for Nuclear Research (CERN), CH-1211 Geneva, Switzerland
| | - Francesco Antonio Bruno
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Salvatore Buontempo
- European Organization for Nuclear Research (CERN), CH-1211 Geneva, Switzerland
- National Institute for Nuclear Physics (INFN), 80125 Napoli, Italy
| | - Ester Catalano
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
- Optosensing Ltd., Via Carlo de Marco 69, 80137 Napoli, Italy
| | - Marco Consales
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Agnese Coscetta
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Andrea Cusano
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Maria Alessandra Cutolo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Pasquale Di Palma
- Dipartimento di Ingegneria, Università degli studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Flavio Esposito
- Dipartimento di Ingegneria, Università degli studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Francesco Fienga
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
- European Organization for Nuclear Research (CERN), CH-1211 Geneva, Switzerland
| | - Michele Giordano
- Istituto per i Polimeri, Compositi e Biomateriali Consiglio Nazionale delle Ricerche Via Enrico Fermi 1, 80055 Portici, Italy
| | - Antonio Iele
- CERICT SCARL, CNOS Center, Viale Traiano, Palazzo ex Poste, 82100 Benevento, Italy
| | - Agostino Iadicicco
- Dipartimento di Ingegneria, Università degli studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Andrea Irace
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Mohammed Janneh
- CERICT SCARL, CNOS Center, Viale Traiano, Palazzo ex Poste, 82100 Benevento, Italy
| | | | - Marco Leone
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Luca Maresca
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Vincenzo Romano Marrazzo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
- European Organization for Nuclear Research (CERN), CH-1211 Geneva, Switzerland
| | - Aldo Minardo
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Marco Pisco
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Giuseppe Quero
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Michele Riccio
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Anubhav Srivastava
- Dipartimento di Ingegneria, Università degli studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Patrizio Vaiano
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Luigi Zeni
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
- Optosensing Ltd., Via Carlo de Marco 69, 80137 Napoli, Italy
| | - Stefania Campopiano
- Dipartimento di Ingegneria, Università degli studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| |
Collapse
|
6
|
Xu S, Kang P, Hu Z, Chang W, Huang F. Ultrasensitive Optical Fiber Sensors Working at Dispersion Turning Point: Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:1725. [PMID: 36772766 PMCID: PMC9920506 DOI: 10.3390/s23031725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Optical fiber sensors working at the dispersion turning point (DTP) have served as promising candidates for various sensing applications due to their ultrahigh sensitivity. In this review, recently developed ultrasensitive fiber sensors at the DTP, including fiber couplers, fiber gratings, and interferometers, are comprehensively analyzed. These three schemes are outlined in terms of operation principles, device structures, and sensing applications. We focus on sensitivity enhancement and optical transducers, we evaluate each sensing scheme based on the DTP principle, and we discuss relevant challenges, aiming to provide some clues for future research.
Collapse
|
7
|
Cai J, Liu Y, Shu X. Long-Period Fiber Grating Sensors for Chemical and Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:542. [PMID: 36617140 PMCID: PMC9823881 DOI: 10.3390/s23010542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Optical fiber biosensors (OFBS) are being increasingly proposed due to their intrinsic advantages over conventional sensors, including their compactness, potential remote control and immunity to electromagnetic interference. This review systematically introduces the advances of OFBS based on long-period fiber gratings (LPFGs) for chemical and biomedical applications from the perspective of design and functionalization. The sensitivity of such a sensor can be enhanced by designing the device working at or near the dispersion turning point, or working around the mode transition, or their combination. In addition, several common functionalization methods are summarized in detail, such as the covalent immobilization of 3-aminopropyltriethoxysilane (APTES) silanization and graphene oxide (GO) functionalization, and the noncovalent immobilization of the layer-by-layer assembly method. Moreover, reflective LPFG-based sensors with different configurations have also been introduced. This work aims to provide a comprehensive understanding of LPFG-based biosensors and to suggest some future directions for exploration.
Collapse
Affiliation(s)
| | | | - Xuewen Shu
- Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Wang P, Sun H, Yang W, Fang Y. Optical Methods for Label-Free Detection of Bacteria. BIOSENSORS 2022; 12:bios12121171. [PMID: 36551138 PMCID: PMC9775963 DOI: 10.3390/bios12121171] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
Pathogenic bacteria are the leading causes of food-borne and water-borne infections, and one of the most serious public threats. Traditional bacterial detection techniques, including plate culture, polymerase chain reaction, and enzyme-linked immunosorbent assay are time-consuming, while hindering precise therapy initiation. Thus, rapid detection of bacteria is of vital clinical importance in reducing the misuse of antibiotics. Among the most recently developed methods, the label-free optical approach is one of the most promising methods that is able to address this challenge due to its rapidity, simplicity, and relatively low-cost. This paper reviews optical methods such as surface-enhanced Raman scattering spectroscopy, surface plasmon resonance, and dark-field microscopic imaging techniques for the rapid detection of pathogenic bacteria in a label-free manner. The advantages and disadvantages of these label-free technologies for bacterial detection are summarized in order to promote their application for rapid bacterial detection in source-limited environments and for drug resistance assessments.
Collapse
Affiliation(s)
- Pengcheng Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Sun
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wei Yang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yimin Fang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
9
|
Ucci S, Spaziani S, Quero G, Vaiano P, Principe M, Micco A, Sandomenico A, Ruvo M, Consales M, Cusano A. Advanced Lab-on-Fiber Optrodes Assisted by Oriented Antibody Immobilization Strategy. BIOSENSORS 2022; 12:1040. [PMID: 36421158 PMCID: PMC9688615 DOI: 10.3390/bios12111040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Lab-on-fiber (LoF) optrodes offer several advantages over conventional techniques for point-of-care platforms aimed at real-time and label-free detection of clinically relevant biomarkers. Moreover, the easy integration of LoF platforms in medical needles, catheters, and nano endoscopes offer unique potentials for in vivo biopsies and tumor microenvironment assessment. The main barrier to translating the vision close to reality is the need to further lower the final limit of detection of developed optrodes. For immune-biosensing purposes, the assay sensitivity significantly relies on the capability to correctly immobilize the capture antibody in terms of uniform coverage and correct orientation of the bioreceptor, especially when very low detection limits are requested as in the case of cancer diagnostics. Here, we investigated the possibility to improve the immobilization strategies through the use of hinge carbohydrates by involving homemade antibodies that demonstrated a significantly improved recognition of the antigen with ultra-low detection limits. In order to create an effective pipeline for the improvement of biofunctionalization protocols to be used in connection with LoF platforms, we first optimized the protocol using a microfluidic surface plasmon resonance (mSPR) device and then transferred the optimized strategy onto LoF platforms selected for the final validation. Here, we selected two different LoF platforms: a biolayer interferometry (BLI)-based device (commercially available) and a homemade advanced LoF biosensor based on optical fiber meta-tips (OFMTs). As a clinically relevant scenario, here we focused our attention on a promising serological biomarker, Cripto-1, for its ability to promote tumorigenesis in breast and liver cancer. Currently, Cripto-1 detection relies on laborious and time-consuming immunoassays. The reported results demonstrated that the proposed approach based on oriented antibody immobilization was able to significantly improve Cripto-1 detection with a 10-fold enhancement versus the random approach. More interestingly, by using the oriented antibody immobilization strategy, the OFMTs-based platform was able to reveal Cripto-1 at a concentration of 0.05 nM, exhibiting detection capabilities much higher (by a factor of 250) than those provided by the commercial LoF platform based on BLI and similar to the ones shown by the commercial and well-established bench-top mSPR Biacore 8K system. Therefore, our work opened new avenues into the development of high-sensitivity LoF biosensors for the detection of clinically relevant biomarkers in the sub-ng/mL range.
Collapse
Affiliation(s)
- Sarassunta Ucci
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy
| | - Sara Spaziani
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| | - Giuseppe Quero
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| | - Patrizio Vaiano
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
| | - Maria Principe
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
| | - Alberto Micco
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| | - Annamaria Sandomenico
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy
| | - Marco Consales
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| | - Andrea Cusano
- Optoelectronics Group, Engineering Department, University of Sannio, c.so Garibaldi 107, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy
| |
Collapse
|
10
|
Zhu J, Bai Y, Chen X, Hu L, Zhang W, Liu C, Shao H, Sun J, Chen Y. Ultrasensitive detection of β-lactamase-associated drug-resistant bacteria using a novel mass-tagged probe-mediated cascaded signal amplification strategy. Chem Sci 2022; 13:12799-12807. [PMID: 36519064 PMCID: PMC9645384 DOI: 10.1039/d2sc01530g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/11/2022] [Indexed: 09/19/2023] Open
Abstract
The emergence and spread of drug-resistant bacteria (DRB) is a global health threat. Early and accurate detection of DRB is a critical step in the treatment of DRB infection. However, traditional assays for DRB detection are time-consuming and have inferior analytical sensitivity and quantification capability. Herein, a mass-tagged probe (MP-CMSA)-mediated enzyme- and light-assisted cascaded signal amplification strategy was developed for the ultrasensitive detection of β-lactamase (BLA), an enzyme closely associated with most DRB. Each MP-CMSA probe contained multiple poly(amidoamine) (PAMAM) dendrimer molecules immobilized on a streptavidin agarose bead via a BLA-cleavable linker, and each dendrimer was modified with multiple mass tags via a photo-cleavable linker. In BLA detection, BLA could cleave the BLA-cleavable linker, leading to dendrimers shedding from the MP-CMSA probe to achieve enzyme-assisted signal amplification. Then, each dendrimer can further release mass tags under UV light to achieve light-assisted signal amplification. After this cascaded signal amplification, the released mass tags were ultimately quantified by mass spectrometry. Consequently, the sensitivity of BLA detection can be significantly enhanced by four orders of magnitude with a detection limit of 50.0 fM. Finally, this approach was applied to the blood samples from patients with DRB. This platform provides a potential strategy for the sensitive, rapid and quantitative detection of DRB infection.
Collapse
Affiliation(s)
- Jianhua Zhu
- School of Pharmacy, Nanjing Medical University 818 Tian Yuan East Road Nanjing 211166 China +86-25-86868467 +86-25-86868326
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University Nanjing 210096 China
| | - Xiuyu Chen
- School of Pharmacy, Nanjing Medical University 818 Tian Yuan East Road Nanjing 211166 China +86-25-86868467 +86-25-86868326
| | - Linlin Hu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University Nanjing 210009 China +86-25-83262630 +86-25-83262630
- Office of Clinical Trial Institution, Zhongda Hospital, School of Medicine, Southeast University Nanjing 210009 China
| | - Wenjun Zhang
- School of Pharmacy, Nanjing Medical University 818 Tian Yuan East Road Nanjing 211166 China +86-25-86868467 +86-25-86868326
| | - Chunyan Liu
- School of Pharmacy, Nanjing Medical University 818 Tian Yuan East Road Nanjing 211166 China +86-25-86868467 +86-25-86868326
| | - Hua Shao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University Nanjing 210009 China +86-25-83262630 +86-25-83262630
| | - Jianguo Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing 210009 China +86-25-83271176 +86-25-83271176
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University 818 Tian Yuan East Road Nanjing 211166 China +86-25-86868467 +86-25-86868326
- State Key Laboratory of Reproductive Medicine 210029 China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine Nanjing 211166 China
| |
Collapse
|
11
|
Label free identification of the different status of anemia disease using optimized double-slot cascaded microring resonator. Sci Rep 2022; 12:5548. [PMID: 35365740 PMCID: PMC8975812 DOI: 10.1038/s41598-022-09504-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022] Open
Abstract
An optical-based label-free biosensors including two indirectly coupled double-slot-waveguide-based microring resonator was designed and optimized for sensing purpose. Then, the optimized system was applied for the detection of hemoglobin concentration in anemia disease. The results were simulated based on the variational finite-difference time domain (varFDTD) method using the Lumerical software (Mode solutions) and the optimum geometrical parameters were determined to realize an optimum light transmission via the sensor. Nine different concentrations of hemoglobin in men and women were applied into the sensor and the status of anemia was identified based on the patients’ gender and different status of anemia disease, including the normal, mild, moderate, severe and life-threatening status. A sensitivity as high as 1024 nm/RIU with the minimum deflection limit of 4.88 × 10–6 RIU were measured for this biosensor, which introduces a high precision and micro-scale lab-on-a-chip micro device for health monitoring of the anemia.
Collapse
|
12
|
Rational Design of a User-Friendly Aptamer/Peptide-Based Device for the Detection of Staphylococcus aureus. SENSORS 2020; 20:s20174977. [PMID: 32887407 PMCID: PMC7506613 DOI: 10.3390/s20174977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
The urgent need to develop a detection system for Staphylococcus aureus, one of the most common causes of infection, is prompting research towards novel approaches and devices, with a particular focus on point-of-care analysis. Biosensors are promising systems to achieve this aim. We coupled the selectivity and affinity of aptamers, short nucleic acids sequences able to recognize specific epitopes on bacterial surface, immobilized at high density on a nanostructured zirconium dioxide surface, with the rational design of specifically interacting fluorescent peptides to assemble an easy-to-use detection device. We show that the displacement of fluorescent peptides upon the competitive binding of S. aureus to immobilized aptamers can be detected and quantified through fluorescence loss. This approach could be also applied to the detection of other bacterial species once aptamers interacting with specific antigens will be identified, allowing the development of a platform for easy detection of a pathogen without requiring access to a healthcare environment.
Collapse
|
13
|
Gu H, Li X, Wang X, Liu X. High-precision differential measurement of dye concentration based on two cascaded fiber Bragg gratings. APPLIED OPTICS 2020; 59:413-417. [PMID: 32225321 DOI: 10.1364/ao.376631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
A high-precision differential detection system based on two cascaded fiber Bragg gratings (FBGs) is proposed to detect dye concentration. In this system, two low-quality common FBGs are connected in a series, and one is corroded by 20% hydrofluoric solutions for 210 min. A novel demodulation method-differential measurement-is proposed to improve the sensitivity of the sensor. The working point is not in the central but in the waist region of the reflection spectra of the etched FBG, which has the best sensitivity and minimal nonlinearity (∼0.018%). After adopting the differential measurement, the detection precision of the dye concentration has been obviously improved. According to our analysis, the theoretical limit sensitivity of the sensor can reach 7×10-4ppm.
Collapse
|
14
|
Wang M, Li H, Xu T, Li G, Yu M, Jiang B, Xu J, Wu J. Probing a chiral drug using long period fiber gratings. OPTICS EXPRESS 2019; 27:31407-31417. [PMID: 31684375 DOI: 10.1364/oe.27.031407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
The electromagnetic field theory for a step-index fiber geometry is developed to sense a surrounding chiral drug via long-period fiber gratings (LPFGs). This theory employs Debye potentials and electromagnetic fields for cladding modes in the LPFGs by introducing constitutive relations for a chiral drug. The fields in the chiral drug are transformed and decomposed into right- and left-hand circularly polarized components to account for the magnetoelectric coupling due to the chirality. The solving process for complex propagation constants is given. Numerical results show that responses of the LPFGs to refractive index and chirality changes are different. The two minimum transmissions of a coated LPFG are very sensitive to the variation of the complex chirality. On the other hand, the two resonance wavelengths keep invariant as real and imaginary parts of the comparatively small chirality change. This work enriches the electromagnetic field theory for better design of LPFGs against the highly sensitive chirality detection.
Collapse
|
15
|
Abedini M, Tekieh T, Sasanpour P. Recording Neural Activity Based on Surface Plasmon Resonance by Optical Fibers-A Computational Analysis. Front Comput Neurosci 2018; 12:61. [PMID: 30123119 PMCID: PMC6085840 DOI: 10.3389/fncom.2018.00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/11/2018] [Indexed: 02/05/2023] Open
Abstract
An all optical, non-destructive method for monitoring neural activity has been proposed and its performance in detection has been analyzed computationally. The proposed method is based on excitation of Surface Plasmon Resonance (SPR) through the structure of optical fibers. The sensor structure consists of a multimode optical fiber where, the cladding of fiber has been removed and thin film of gold structure has been deposited on the surface. Impinging the laser light with appropriate wavelength inside the fiber and based on the total internal reflection, the evanescent wave will excite surface plasmons in the gold thin film. The absorption of light by surface plasmons in the gold structure is severely dependent on the dielectric properties at its vicinity. The electrical activity of neural cells (action potential) can modulate the dielectric properties at its vicinity and hence can modify the absorption of light inside the optical fiber. We have computationally analyzed the performance of the proposed sensor with different available geometries using Finite Element Method (FEM). In this regard, we have shown that the optical response of proposed sensor will track the action potential of the neuron at its vicinity. Based on different geometrical structure, the sensor has absorption in different regions of visible spectrum.
Collapse
Affiliation(s)
- Mitra Abedini
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti Medical University, Tehran, Iran
| | - Tahereh Tekieh
- Complex System Group, Department of Physics, Sydney University, Sydney, NSW, Australia
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti Medical University, Tehran, Iran.,School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
16
|
Esposito F, Ranjan R, Campopiano S, Iadicicco A. Arc-Induced Long Period Gratings from Standard to Polarization-Maintaining and Photonic Crystal Fibers. SENSORS 2018; 18:s18030918. [PMID: 29558407 PMCID: PMC5877216 DOI: 10.3390/s18030918] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 11/29/2022]
Abstract
In this work, we report about our recent results concerning the fabrication of Long Period Grating (LPG) sensors in several optical fibers, through the Electric Arc Discharge (EAD) technique. In particular, the following silica fibers with both different dopants and geometrical structures are considered: standard Ge-doped, photosensitive B/Ge codoped, P-doped, pure-silica core with F-doped cladding, Panda type Polarization-maintaining, and Hollow core Photonic crystal fiber. An adaptive platform was developed and the appropriate “recipe” was identified for each fiber, in terms of both arc discharge parameters and setup arrangement, for manufacturing LPGs with strong and narrow attenuation bands, low insertion losses, and short length. As the fabricated devices have appealing features from the application point of view, the sensitivity characteristics towards changes in different external perturbations (i.e., surrounding refractive index, temperature, and strain) are investigated and compared, highlighting the effects of different fiber composition and structure.
Collapse
Affiliation(s)
- Flavio Esposito
- Department of Engineering, University of Naples "Parthenope", Centro Direzionale Isola C4, 80143 Napoli, Italy.
| | - Rajeev Ranjan
- Department of Engineering, University of Naples "Parthenope", Centro Direzionale Isola C4, 80143 Napoli, Italy.
- Institute for Microelectronics and Microsystems, National Research Council, 80131 Napoli, Italy.
| | - Stefania Campopiano
- Department of Engineering, University of Naples "Parthenope", Centro Direzionale Isola C4, 80143 Napoli, Italy.
| | - Agostino Iadicicco
- Department of Engineering, University of Naples "Parthenope", Centro Direzionale Isola C4, 80143 Napoli, Italy.
| |
Collapse
|
17
|
Bastos AR, Vicente CMS, Oliveira-Silva R, Silva NJO, Tacão M, Costa JPD, Lima M, André PS, Ferreira RAS. Integrated Optical Mach-Zehnder Interferometer Based on Organic-Inorganic Hybrids for Photonics-on-a-Chip Biosensing Applications. SENSORS 2018. [PMID: 29534514 PMCID: PMC5877377 DOI: 10.3390/s18030840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of portable low-cost integrated optics-based biosensors for photonics-on-a-chip devices for real-time diagnosis are of great interest, offering significant advantages over current analytical methods. We report the fabrication and characterization of an optical sensor based on a Mach-Zehnder interferometer to monitor the growing concentration of bacteria in a liquid medium. The device pattern was imprinted on transparent self-patternable organic-inorganic di-ureasil hybrid films by direct UV-laser, reducing the complexity and cost production compared with lithographic techniques or three-dimensional (3D) patterning using femtosecond lasers. The sensor performance was evaluated using, as an illustrative example, E. coli cell growth in an aqueous medium. The measured sensitivity (2 × 10-4 RIU) and limit of detection (LOD = 2 × 10-4) are among the best values known for low-refractive index contrast sensors. Furthermore, the di-ureasil hybrid used to produce this biosensor has additional advantages, such as mechanical flexibility, thermal stability, and low insertion losses due to fiber-device refractive index mismatch (~1.49). Therefore, the proposed sensor constitutes a direct, compact, fast, and cost-effective solution for monitoring the concentration of lived-cells.
Collapse
Affiliation(s)
- Ana R Bastos
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
- Instituto de Telecomunicações, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Electronics, Telecommunications and Informatics, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carlos M S Vicente
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
- Instituto de Telecomunicações, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Rui Oliveira-Silva
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Nuno J O Silva
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Marta Tacão
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João P da Costa
- Department of Chemistry and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Mário Lima
- Instituto de Telecomunicações, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Electronics, Telecommunications and Informatics, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Paulo S André
- Department of Electric and Computer Engineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - Rute A S Ferreira
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|