1
|
Jarecki Q, Kupinski M. Optimizing near-infrared polariscopic imaging for the living human eye. OPTICS EXPRESS 2024; 32:18113-18126. [PMID: 38858975 DOI: 10.1364/oe.520657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024]
Abstract
Hardware architectures and image interpretation can be simplified by partial polarimetry. Mueller matrix (MM) polarimetry allows the investigation of partial polarimeter designs for a given scientific task. In this work, we use MM measurements to solve for a fixed polarization illumination and analyzer state that maximize polariscopic image contrast of the human eye. The eye MM image acquisition takes place over 15 seconds which motivates the development of a partial polarimeter that has snapshot operation. Within the eye, the birefringent cornea produces spatially-varying patterns of retardance exceeding half of a wave with a fast-axis varying from linear, to circular, and elliptical states in between. Our closed-form polariscopic pairs are a general solution that maximizes contrast between two non-depolarizing pure retarder MMs. For these MMs, there is a family of polariscopic pairs that maximize contrast. This range of solutions creates an opportunity to use the distance from optimal as a criteria to adjust polarimetric hardware architecture. We demonstrate our optimization approach by performing both Mueller and polariscopic imaging of an in vivo human eye at 947 nm using a dual-rotating-retarder polarimeter. Polariscopic images are simulated from Mueller measurements of 19 other human subjects to test the robustness of this optimal solution.
Collapse
|
2
|
Bradford S, Luo S, Brown D, Juhasz T, Jester J. A review of the epithelial and stromal effects of corneal collagen crosslinking. Ocul Surf 2023; 30:150-159. [PMID: 37683969 PMCID: PMC10993773 DOI: 10.1016/j.jtos.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Induced corneal collagen crosslinking and mechanical stiffening via ultraviolet-A photoactivation of riboflavin (UVA CXL) is now a common treatment for corneal ectasia and Keratoconus. Some effects of the procedure such as induced mechanical stiffening, corneal flattening, and cellular toxicity are well-known, but others remain more controversial. Authors report a variety of contradictory effects, and provide evidence based on individual results and observations. A full understanding of the effects of and mechanisms behind this procedure are essential to predicting its outcome. A growing interest in modifications to the standard UVA CXL protocol, such as transepithelial or accelerated UVA CXL, makes analyzing the literature as a whole more urgent. This review presents an analysis of both the agreed-upon and contradictory results reported and the various methods used to obtain them.
Collapse
Affiliation(s)
- Samantha Bradford
- Department of Ophthalmology and Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
| | - Shangbang Luo
- Department of Ophthalmology and Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Donald Brown
- Department of Ophthalmology and Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Tibor Juhasz
- Department of Ophthalmology and Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - James Jester
- Department of Ophthalmology and Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Munisso MC, Saito S, Tsuge I, Morimoto N. Three-dimensional analysis of load-dependent changes in the orientation of dermal collagen fibers in human skin: A pilot study. J Mech Behav Biomed Mater 2023; 138:105585. [PMID: 36435035 DOI: 10.1016/j.jmbbm.2022.105585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
The availability of quantitative structural data on the orientation of collagen fibers is of crucial importance for understanding the behavior of connective tissues. These fibers can be visualized using a variety of imaging techniques, including second harmonic generation (SHG) microscopy. However, characterization of the collagen network requires the accurate extraction of parameters from imaging data. To this end, several automated processes have been developed to identify the preferred orientation of collagen fibers. Common methods include fast Fourier transforms and curvelet transforms, but these tools are mostly used to infer a single preferred orientation. The purpose of this pilot study was to develop an easy procedure for comprehensively comparing multiple human skin samples with the goal of analyzing load-dependent changes via SHG microscopy. We created a 3D model based upon 2D image stacks that provide fiber orientation data perpendicular and parallel to the plane of the epidermis. The SHG images were analyzed by CurveAlign to obtain angle histogram plots containing information about the multiple fiber orientations in each single image. Subsequently, contour plots of the angle histogram intensities were created to provide a useful visual plotting method to clearly show the anomalies in the angle histograms in all samples. Our results provided additional details on how the collagen network carries a load. In fact, analysis of SHG images indicated that increased stretch was accompanied by an increase in the alignment of fibers in the loading direction. Moreover, these images demonstrated that more than one type of preferred orientation is present. In particular, the 3D network of fibers appears to have two preferred orientations in the planes both perpendicular and parallel to the plane of the epidermis.
Collapse
Affiliation(s)
- Maria Chiara Munisso
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | - Susumu Saito
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | - Itaru Tsuge
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Bronte-Ciriza D, Birkenfeld JS, de la Hoz A, Curatolo A, Germann JA, Villegas L, Varea A, Martínez-Enríquez E, Marcos S. Estimation of scleral mechanical properties from air-puff optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:6341-6359. [PMID: 34745741 PMCID: PMC8548012 DOI: 10.1364/boe.437981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 05/11/2023]
Abstract
We introduce a method to estimate the biomechanical properties of the porcine sclera in intact eye globes ex vivo, using optical coherence tomography that is coupled with an air-puff excitation source, and inverse optimization techniques based on finite element modeling. Air-puff induced tissue deformation was determined at seven different locations on the ocular globe, and the maximum apex deformation, the deformation velocity, and the arc-length during deformation were quantified. In the sclera, the experimental maximum deformation amplitude and the corresponding arc length were dependent on the location of air-puff excitation. The normalized temporal deformation profile of the sclera was distinct from that in the cornea, but similar in all tested scleral locations, suggesting that this profile is independent of variations in scleral thickness. Inverse optimization techniques showed that the estimated scleral elastic modulus ranged from 1.84 ± 0.30 MPa (equatorial inferior) to 6.04 ± 2.11 MPa (equatorial temporal). The use of scleral air-puff imaging holds promise for non-invasively investigating the structural changes in the sclera associated with myopia and glaucoma, and for monitoring potential modulation of scleral stiffness in disease or treatment.
Collapse
Affiliation(s)
- David Bronte-Ciriza
- Instituto de Óptica "Daza de Valdés", Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
- CNR - IPCF, Istituto per i Processi Chimico-Fisici, Messina, Italy
- Co-first authors
| | - Judith S Birkenfeld
- Instituto de Óptica "Daza de Valdés", Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
- Co-first authors
| | - Andrés de la Hoz
- Instituto de Óptica "Daza de Valdés", Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
| | - Andrea Curatolo
- Instituto de Óptica "Daza de Valdés", Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - James A Germann
- Instituto de Óptica "Daza de Valdés", Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
| | - Lupe Villegas
- Instituto de Óptica "Daza de Valdés", Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
| | - Alejandra Varea
- Instituto de Óptica "Daza de Valdés", Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
| | - Eduardo Martínez-Enríquez
- Instituto de Óptica "Daza de Valdés", Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
| | - Susana Marcos
- Instituto de Óptica "Daza de Valdés", Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
- Center for Visual Science, The Institute of Optics, Flaum Eye Institute, University of Rochester, NY 14642, USA
| |
Collapse
|
5
|
Lee W, Moghaddam AO, Lin Z, McFarlin BL, Wagoner Johnson AJ, Toussaint KC. Quantitative Classification of 3D Collagen Fiber Organization From Volumetric Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4425-4435. [PMID: 32833631 DOI: 10.1109/tmi.2020.3018939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Collagen fibers in biological tissues have a complex 3D organization containing rich information linked to tissue mechanical properties and are affected by mutations that lead to diseases. Quantitative assessment of this 3D collagen fiber organization could help to develop reliable biomechanical models and understand tissue structure-function relationships, which impact diagnosis and treatment of diseases or injuries. While there are advanced techniques for imaging collagen fibers, published methods for quantifying 3D collagen fiber organization have been sparse and give limited structural information which cannot distinguish a wide range of 3D organizations. In this article, we demonstrate an algorithm for quantitative classification of 3D collagen fiber organization. The algorithm first simulates five groups, or classifications, of fiber organization: unidirectional, crimped, disordered, two-fiber family, and helical. These five groups are widespread in natural tissues and are known to affect the tissue's mechanical properties. We use quantitative metrics based on features such as preferred 3D fiber orientation and spherical variance to differentiate each classification in a repeatable manner. We validate our algorithm by applying it to second-harmonic generation images of collagen fibers in tendon and cervix tissue that has been sectioned in specified orientations, and we find strong agreement between classification from simulated data and the physical fiber organization. Our approach provides insight for interpreting 3D fiber organization directly from volumetric images. This algorithm could be applied to other fiber-like structures that are not necessarily made of collagen.
Collapse
|
6
|
McLean JP, Fang S, Gallos G, Myers KM, Hendon CP. Three-dimensional collagen fiber mapping and tractography of human uterine tissue using OCT. BIOMEDICAL OPTICS EXPRESS 2020; 11:5518-5541. [PMID: 33149968 PMCID: PMC7587264 DOI: 10.1364/boe.397041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 05/10/2023]
Abstract
Automatic quantification and visualization of 3-D collagen fiber architecture using Optical Coherence Tomography (OCT) has previously relied on polarization information and/or prior knowledge of tissue-specific fiber architecture. This study explores image processing, enhancement, segmentation, and detection algorithms to map 3-D collagen fiber architecture from OCT images alone. 3-D fiber mapping, histogram analysis, and 3-D tractography revealed fiber groupings and macro-organization previously unseen in uterine tissue samples. We applied our method on centimeter-scale mosaic OCT volumes of uterine tissue blocks from pregnant and non-pregnant specimens revealing a complex, patient-specific network of fibrous collagen and myocyte bundles.
Collapse
Affiliation(s)
- James P. McLean
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Shuyang Fang
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - George Gallos
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kristin M. Myers
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Christine P. Hendon
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
7
|
Germann JA, Martínez-Enríquez E, Martínez-García MC, Kochevar IE, Marcos S. Corneal Collagen Ordering After In Vivo Rose Bengal and Riboflavin Cross-Linking. Invest Ophthalmol Vis Sci 2020; 61:28. [PMID: 32186674 PMCID: PMC7401826 DOI: 10.1167/iovs.61.3.28] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose Photoactivated cornea collagen cross-linking (CXL) increases corneal stiffness by initiating formation of covalent bonds between stromal proteins. Because CXL depends on diffusion to distribute the photoinitiator, a gradient of CXL efficiency with depth is expected that may affect the degree of stromal collagen organization. We used second harmonic generation (SHG) microscopy to investigate the differences in stromal collagen organization in rabbit eyes after corneal CXL in vivo as a function of depth and time after surgery. Methods Rabbit corneas were treated in vivo with either riboflavin/UV radiation (UVX) or Rose Bengal/green light (RGX) and evaluated 1 and 2 months after CXL. Collagen fibers were imaged with a custom-built SHG scanning microscope through the central cornea (350 µm depth, 225 × 225 µm en face images). The order coefficient (OC), a metric for collagen organization, and total SHG signal were computed for each depth and compared between treatments. Results OC values of CXL-treated corneas were larger than untreated corneas by 27% and 20% after 1 month and 38% and 33% after 2 months for the RGX and UVX, respectively. RGX OC values were larger than UVX OC values by 3% and 5% at 1 and 2 months. The SHG signal was higher in CXL corneas than untreated corneas, both at 1 and 2 months after surgery, by 18% and 26% and 1% and 10% for RGX and UVX, respectively. Conclusions Increased OC corresponded with increased collagen fiber organization in CXL corneas. Changes in collagen organization parallel reported temporal changes in cornea stiffness after CXL and also, surprisingly, are detected deeper in the stroma than the regions stiffened by collagen cross-links.
Collapse
|
8
|
Iancu RC, Bujor IA, Iliuță C, Tudor Ș, Ungureanu E, Pașca IG, Istrate S. Correlations between corneal biomechanics and specular microscopy in patient with cataract. Rom J Ophthalmol 2020; 64:132-145. [PMID: 32685779 PMCID: PMC7339691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This study aimed to analyze the connection between corneal biomechanics (corneal hysteresis, CH) and endothelial cell density of cornea (mean endothelial cell density, MCD) in patients diagnosed with cataract. This retrospective, observational study was performed in the Ophthalmology Clinic of the University Emergency Hospital in Bucharest. Of 60 patients (120 eyes) with cataract, who were included in this study, we analyzed the CH values obtained using with the Ocular Response Analyzer (ORA) and the MCD values obtained using the specular microscopy. The study groups comprised both men and women with ages ranging from 45 to 63 years. Patients were divided into three study groups according to CH values. In each batch, the CH values obtained with the Ocular Response Analyzer (ORA) were correlated with age, gender and MCD, then the subgroups were compared. All the data gathered showed no correlation to be statistically significant regarding the biomechanical properties of the cornea and the corneal endothelial cell density in patients with cataract.
Collapse
Affiliation(s)
| | - Inna Adriana Bujor
- Department of Ophthalmology, University Emergency Hospital, Bucharest, Romania
| | - Cătălina Iliuță
- Department of Ophthalmology, University Emergency Hospital, Bucharest, Romania
| | - Ștefania Tudor
- ”Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Emil Ungureanu
- Department of Ophthalmology, University Emergency Hospital, Bucharest, Romania
| | | | - Sînziana Istrate
- Department of Ophthalmology, University Emergency Hospital, Bucharest, Romania
| |
Collapse
|
9
|
Abdullah OA, El Gazzar WB, Salem TI, Al-Kamil EA. Role of extracellular matrix remodelling gene SNPs in keratoconus. Br J Biomed Sci 2019; 77:13-18. [DOI: 10.1080/09674845.2019.1654346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- OA Abdullah
- Departments of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - WB El Gazzar
- Departments of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - TI Salem
- Ophthalmology, Faculty of Medicine, Benha University, Benha, Egypt
| | - EA Al-Kamil
- Basic medical sciences Department, Faculty of Medicine, Hashemite University, Zarqa, Jordan
| |
Collapse
|
10
|
Ávila FJ, Artal P, Bueno JM. Quantitative Discrimination of Healthy and Diseased Corneas With Second Harmonic Generation Microscopy. Transl Vis Sci Technol 2019; 8:51. [PMID: 31293806 PMCID: PMC6601709 DOI: 10.1167/tvst.8.3.51] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose To analyze the spatial organization of pathological corneas with second harmonic generation (SHG) imaging and to provide a proof of concept to objectively distinguish these from the healthy corneas. Methods A custom-built SHG microscope was used to image the anterior stroma of ex vivo corneas, both control and affected by some representative pathologies. The structure tensor (ST) was employed as a metric to explore and quantify the alterations in the spatial distribution of the collagen lamellae. Results The collagen arrangement differed between healthy and pathological samples. The former showed a regular distribution and a low structural dispersion (SD < 40°) within the stroma with a well-defined dominant orientation. This regular arrangement drastically turns into a disorganized pattern in pathological corneas (SD > 40°). Conclusions The combination of SHG imaging and the ST allows obtaining quantitative information to differentiate the stromal collagen organization in healthy and diseased corneas. This approach represents a feasible and powerful technique with potential applications in clinical corneal diagnoses. Translational Relevance The ST applied to SHG microscopy images of the corneal stroma provides an experimental objective score to differentiate control from pathological or damaged corneas. Future implementations of this technique in clinical environments might might be a promising tool in Ophthalmology, not only to diagnose and monitor corneal diseases, but also to follow-up surgical outcome.
Collapse
Affiliation(s)
- Francisco J Ávila
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Murcia, Spain
| | - Pablo Artal
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Murcia, Spain
| | - Juan M Bueno
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
11
|
McLean JP, Gan Y, Lye TH, Qu D, Lu HH, Hendon CP. High-speed collagen fiber modeling and orientation quantification for optical coherence tomography imaging. OPTICS EXPRESS 2019; 27:14457-14471. [PMID: 31163895 PMCID: PMC6825605 DOI: 10.1364/oe.27.014457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 05/03/2023]
Abstract
Quantifying collagen fiber architecture has clinical and scientific relevance across a variety of tissue types and adds functionality to otherwise largely qualitative imaging modalities. Optical coherence tomography (OCT) is uniquely suited for this task due to its ability to capture the collagen microstructure over larger fields of view than traditional microscopy. Existing image processing techniques for quantifying fiber architecture, while accurate and effective, are very slow for processing large datasets and tend to lack structural specificity. We describe here a computationally efficient method for quantifying and visualizing collagen fiber organization. The algorithm is demonstrated on swine atria, bovine anterior cruciate ligament, and human cervical tissue samples. Additionally, we show an improved performance for images with crimped fiber textures and low signal to noise when compared to similar methods.
Collapse
Affiliation(s)
- James P. McLean
- Electrical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, 1300 West 120th Street, New York, NY 10025,
USA
| | - Yu Gan
- Electrical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, 1300 West 120th Street, New York, NY 10025,
USA
| | - Theresa H. Lye
- Electrical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, 1300 West 120th Street, New York, NY 10025,
USA
| | - Dovina Qu
- Biomedical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, 1300 West 120th Street, New York, NY 10025,
USA
| | - Helen H. Lu
- Biomedical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, 1300 West 120th Street, New York, NY 10025,
USA
| | - Christine P. Hendon
- Electrical Engineering, Fu Foundation School of Engineering and Applied Science, Columbia University, 1300 West 120th Street, New York, NY 10025,
USA
| |
Collapse
|
12
|
Dudenkova VV, Shirmanova MV, Lukina MM, Feldshtein FI, Virkin A, Zagainova EV. Examination of Collagen Structure and State by the Second Harmonic Generation Microscopy. BIOCHEMISTRY (MOSCOW) 2019; 84:S89-S107. [DOI: 10.1134/s0006297919140062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Quantitative Analysis of the Corneal Collagen Distribution after In Vivo Cross-Linking with Second Harmonic Microscopy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3860498. [PMID: 30756083 PMCID: PMC6348900 DOI: 10.1155/2019/3860498] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/24/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Abstract
Corneal cross-linking (CXL) is a surgical procedure able to modify corneal biomechanics and stabilize keratoconus progression. Although it is known that CXL produces changes in corneal collagen distribution, these are still a topic of discussion. Here we quantitatively compare the corneal stroma architecture between two animal models four weeks after in vivo conventional CXL treatment, with second harmonic generation (SHG) imaging microscopy and the structure tensor (ST). The healing stage and the stroma recovery were also analyzed by means of histological sections. Results show that the CXL effects depend on the initial arrangement of the corneal collagen. While the treatment increases the order in corneas with a low level of initial organization, corneas presenting a fairly regular pattern are hardly affected. Histological samples showed active keratocytes in anterior and middle stroma, what means that the recovery is still in progress. The combination of SHG imaging and the ST is able to objectively discriminate the changes suffered by the collagen arrangement after the CXL treatment, whose effectiveness depends on the initial organization of the collagen fibers within the corneal stroma.
Collapse
|