1
|
Zhang J, Xu J, Zhang J, Lin Y, Li J, Chen D, Lin W, Yang C, Yi G. Poly(Photosensitizer-Prodrug) Unimolecular Micelles for Chemo-Photodynamic Synergistic Therapy of Antitumor and Antibacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14908-14921. [PMID: 39001842 DOI: 10.1021/acs.langmuir.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
It is crucial to use simple methods to prepare stable polymeric micelles with multiple functions for cancer treatment. Herein, via a "bottom-up" strategy, we reported the fabrication of β-CD-(PEOSMA-PCPTMA-PPEGMA)21 (βPECP) unimolecular micelles that could simultaneously treat tumors and bacteria with chemotherapy and photodynamic therapy (PDT). The unimolecular micelles consisted of a 21-arm β-cyclodextrin (β-CD) core as a macromolecular initiator, photosensitizer eosin Y (EOS-Y) monomer EOSMA, anticancer drug camptothecin (CPT) monomer, and a hydrophilic shell PEGMA. Camptothecin monomer (CPTMA) could achieve controlled release of the CPT due to the presence of responsively broken disulfide bonds. PEGMA enhanced the biocompatibility of micelles as a hydrophilic shell. Two βPECP with different lengths were synthesized by modulating reaction conditions and the proportion of monomers, which both were self-assembled to unimolecular micelles in water. βPECP unimolecular micelles with higher EOS-Y/CPT content exhibited more excellent 1O2 production, in vitro drug release efficiency, higher cytotoxicity, and superior antibacterial activity. Also, we carried out simulations of the self-assembly and CPT release process of micelles, which agreed with the experiments. This nanosystem, which combines antimicrobial and antitumor functions, provides new ideas for bacteria-mediated tumor clinical chemoresistance.
Collapse
Affiliation(s)
- Jieheng Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianchang Xu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jiaying Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yibin Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiaxin Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Duoqu Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Chufen Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 522000, China
| |
Collapse
|
2
|
Cui Z, Li Y, Qin Y, Li J, Shi L, Wan M, Hu M, Chen Y, Ji Y, Hou Y, Ye F, Liu C. Polymyxin B-targeted liposomal photosensitizer cures MDR A. baumannii burn infections and accelerates wound healing via M 1/M 2 macrophage polarization. J Control Release 2024; 366:297-311. [PMID: 38161034 DOI: 10.1016/j.jconrel.2023.12.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii infections pose a significant challenge in burn wound management, necessitating the development of innovative therapeutic strategies. In this work, we introduced a novel polymyxin B (PMB)-targeted liposomal photosensitizer, HMME@Lipo-PMB, for precise and potent antimicrobial photodynamic therapy (aPDT) against burn infections induced by MDR A. baumanni. HMME@Lipo-PMB-mediated aPDT exhibited enhanced antibacterial efficacy by specifically targeting and disrupting bacterial cell membranes, and generating increased intracellular ROS. Remarkably, even at low concentrations, this targeted approach significantly reduced bacterial viability in vitro and completely eradicated burn infections induced by MDR A. baumannii in vivo. Additionally, HMME@Lipo-PMB-mediated aPDT facilitated burn infection wound healing by modulating M1/M2 macrophage polarization. It also effectively promoted acute inflammation in the early stage, while attenuated chronic inflammation in the later stage of wound healing. This dynamic modulation promoted the formation of granulation tissue, angiogenesis, and collagen regeneration. These findings demonstrate the tremendous potential of HMME@Lipo-PMB-mediated aPDT as a promising alternative for the treatment of burn infections caused by MDR A. baumannii.
Collapse
Affiliation(s)
- Zixin Cui
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China; Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Yiyang Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China; Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Yannan Qin
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China
| | - Jianzhou Li
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Lei Shi
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Meijuan Wan
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Min Hu
- Department of Chemistry, School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, PR China
| | - Yunru Chen
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China
| | - Yanhong Ji
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China
| | - Feng Ye
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, PR China.
| | - Chengcheng Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China.
| |
Collapse
|
3
|
Chen J, Jing Q, Xu Y, Lin Y, Mai Y, Chen L, Wang G, Chen Z, Deng L, Chen J, Yuan C, Jiang L, Xu P, Huang M. Functionalized zinc oxide microparticles for improving the antimicrobial effects of skin-care products and wound-care medicines. BIOMATERIALS ADVANCES 2022; 135:212728. [PMID: 35929206 DOI: 10.1016/j.bioadv.2022.212728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 06/15/2023]
Abstract
ZnO is an important component in skin-protection products and wound-care medicines. However, ZnO's antibacterial activity is moderate. We developed two types of ZnO microparticles loading with phthalocyanine-type photosensitizers (ZnO/PSs) introducing the photodynamic effects. These photosensitive ZnO microparticles exhibited long-term while moderate antimicrobial effects by continuously releasing Zn2+ ions. The antimicrobial efficacies were remarkably enhanced by triggering the photodynamic antimicrobial effects. Compared to the sole ZnO which showed non-measurable antimicrobial activity at a concentration of 10 mg/L, both ZnO/PSs demonstrated antimicrobial rates ranged 99%-99.99% against Escherichia coli, normal and drug-resistant Staphylococcus aureus. In a dorsal wound infection mouse model, treatment with ZnO/PSs significantly accelerated the wound recovery rates. ZnO/PSs promoted wound healing by a dual effect: 1) the release of Zn2+ ions from ZnO facilitating tissue remodeling; 2) the photodynamic effect efficiently eliminates pathogens avoiding infection. Notably, ZnO/PSs inherited the high biosafety of ZnO without causing noticeable toxicity against erythrocyte and endothelial cells. This study not only provides a highly safe and efficient antimicrobial ZnO material for skin cares and wound modulations, but also proposes a strategy to functionalize ZnO materials.
Collapse
Affiliation(s)
- Jingyi Chen
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Qian Jing
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Yuanjie Xu
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Yuxin Lin
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Yuhan Mai
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Liyun Chen
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Guodong Wang
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Zheng Chen
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Lina Deng
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Jincan Chen
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian 350116, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
4
|
Conjugation of Antimicrobial Peptide to Zinc Phthalocyanine for an Efficient Photodynamic Antimicrobial Chemotherapy. COATINGS 2022. [DOI: 10.3390/coatings12020200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Photodynamic antimicrobial chemotherapy is an attractive and novel therapeutic approach to treat microbial infections. Antimicrobial peptides (AMPs) have the potential to specifically target and kill the microorganism while showing no effect toward mammalian cells. In the current study, antimicrobial peptide (GGG(RW)3), an analogue of MP-196, was conjugated to a zinc phthalocyanine (ZnPc) photosensitizer (PS) for photoinactivation assay to enhance the bacterial killing efficacy of the peptide. The AMPs showed selectivity toward the Gram-positive strain of bacteria. We observed that the conjugate ZnPc-GGG(RW)3 also displayed a photoinactivation effect against the Gram-positive strains of S. aureus. The results showed that ZnPc-GGG(RW)3 induced a 6-log reduction (i.e., 99.999% cell killing) in Gram-positive S. aureus at a light dose of 22 J/cm2 upon illumination under red light, while the peptide did not exhibit such a significant effect when tested alone at the same concentration. The conjugate also showed 50% inhibition of the bacterial strain in the dark at a higher concentration. Furthermore, the addition of potassium iodide salt to the PS at lower concentrations also significantly killed the Gram-negative E. coli strain and killed the E. coli strain with up to a 5-log reduction at a light dose of 22 J/cm2 under red light illumination. We demonstrated the efficacy of antimicrobial peptide (GGG(RW)3 enhanced by conjugation to a ZnPc photosensitizer.
Collapse
|
5
|
Li Z, Wu Z, Wang J, Huang M, Lin M. Expanding the applications of photodynamic therapy-tooth bleaching. Clin Oral Investig 2022; 26:2175-2186. [PMID: 34657223 DOI: 10.1007/s00784-021-04199-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/21/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES The current tooth bleaching materials are associated with adverse effect. Photodynamic method based on a novel photosensitizer alone, without combining with peroxides, is evaluated for tooth bleaching application. MATERIALS AND METHODS Teeth samples were randomly divided into 3 groups with different treatment schemes, including negative control group (group A, physiological saline), experimental group (group B, ZnPc(Lys)5), and the positive control group (group C, hydrogen peroxide). Tooth color, surface microhardness, and roughness were determined at baseline, right after the first and second phase of bleaching, as well as 1 week and 1 month post-bleaching. Four samples in each group was randomly selected to evaluate the changes in surface morphology using the scanning electron microscope. RESULTS The color change values (ΔE) in group B (7.10 ± 1.03) and C (12.22 ± 2.35) were significantly higher than that in group A (0.93 ± 0.30, P < 0.05). Additionally, surface microhardness and roughness were significantly affected in group C, but not in the group A and B. Furthermore, the scanning electron microscope images showed no adverse effect of enamel in the group A and B while the group C demonstrated corrosive changes. CONCLUSIONS ZnPc(Lys)5 had a satisfactory bleaching effect and is promising to be a new type of tooth bleaching agent. CLINICAL RELEVANCE The current tooth bleaching materials give a satisfactory clinical outcome and long-term stability, but associated with some adverse reactions. Photosenstizer ZnPc(Lys)5 eliminated the main side effects observed in hydrogen peroxide-based agents on the enamel, and also had a satisfactory bleaching effect and provide a novel selective bleaching scheme for clinical use.
Collapse
Affiliation(s)
- Zhengquan Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fujian, 350000, China
| | - Zhouyan Wu
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fujian, 350000, China
| | - Jie Wang
- Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fujian, 350000, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, Fujian, China.
| | - Minkui Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fujian, 350000, China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fujian, 350000, China.
| |
Collapse
|
6
|
Mba IE, Nweze EI. Application of Nanotechnology in the Treatment of Infectious Diseases: An Overview. NANOTECHNOLOGY FOR INFECTIOUS DISEASES 2022:25-51. [DOI: 10.1007/978-981-16-9190-4_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
7
|
Lv S, Song B, Han F, Li Z, Fan B, Zhang R, Zhang J, Li J. MXene-based hybrid system exhibits excellent synergistic antibiosis. NANOTECHNOLOGY 2021; 33:085101. [PMID: 34757944 DOI: 10.1088/1361-6528/ac385d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/09/2021] [Indexed: 05/21/2023]
Abstract
MXenes are a group of inorganic two-dimensional (2D) nanomaterial, and have raised significant interests in biomedical areas. Ti3C2Tx, as an important member of MXene family, is widely studied because of its biodegradability and low-cytotoxicity. However, their single antibacterial mechanism and poor stability in aqueous solution need to be improved, especially for the antimicrobial applications. In this work, a MXene-based hybrid antibacterial system (M-HAS) was developed and its synergistic antibacterial activity was investigated. In the M-HAS, 2D few-layer Ti3C2Tx(FL-Ti3C2Tx) was modified with hydrophilic polymers and thereby used as carriers for silver nanoparticles (Ag NPs). By assembling these two substrates, photodynamic performance of the prepared system is significantly improved with a large amount of reactive oxygen species produced under 660 nm laser. Antibacterial effects of the M-HAS are enhanced by over 4 times with irradiation. In another word, the developed hybrid system displays excellent photodynamic antibacterial synergistic properties. This work takes advantage of the photodynamic properties of each component in the M-HAS to achieve efficient antibacterial activity and proposes an innovative approach to develop the 2D FL-Ti3C2Tx-based antibacterial platform.
Collapse
Affiliation(s)
- Shupei Lv
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Bo Song
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Fengqi Han
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhanrong Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Bingbing Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Rui Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- School of Material Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, People's Republic of China
| | - Junjie Zhang
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Jingguo Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
8
|
Zhang D, Chen J, Jing Q, Chen Z, Ullah A, Jiang L, Zheng K, Yuan C, Huang M. Development of a Potent Antimicrobial Peptide With Photodynamic Activity. Front Microbiol 2021; 12:624465. [PMID: 34140932 PMCID: PMC8203924 DOI: 10.3389/fmicb.2021.624465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/08/2021] [Indexed: 01/10/2023] Open
Abstract
The emergence of antibiotic-resistant bacteria poses a serious challenge to medical practice worldwide. A small peptide with sequence RWRWRW was previously identified as a core antimicrobial peptide with limited antimicrobial spectrum to bacteria, especially Gram-positive bacteria. By conjugating this peptide and its analogs with lipophilic phthalocyanine (Pc), we identified a new antibiotic peptide [PcG3K5(RW)3]. The peptide demonstrates increased antimicrobial effect to both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. In addition, Pc also provides added and potent antimicrobial effect upon red light illumination. The inhibitory efficacy of PcG3K5(RW)3 was increased by ~140-fold to nanomolar range upon illumination. Moreover, PcG3K5(RW)3 was safe for mammalian cell and promoted wound healing in the mouse infection model. Our work provides a new direction to optimize antimicrobial peptides to enhance antimicrobial efficacy.
Collapse
Affiliation(s)
- Di Zhang
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Jingyi Chen
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Qian Jing
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zheng Chen
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Azeem Ullah
- College of Chemistry, Fuzhou University, Fuzhou, China
| | | | - Ke Zheng
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | | |
Collapse
|
9
|
Al-Raqa SY, Khezami K, Kaya EN, Durmuş M. A novel water soluble axially substituted silicon(IV) phthalocyanine bearing quaternized 4-(4-pyridinyl)phenol groups: Synthesis, characterization, photophysicochemical properties and BSA/DNA binding behavior. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Revuelta-Maza MÁ, González-Jiménez P, Hally C, Agut M, Nonell S, de la Torre G, Torres T. Fluorine-substituted tetracationic ABAB-phthalocyanines for efficient photodynamic inactivation of Gram-positive and Gram-negative bacteria. Eur J Med Chem 2019; 187:111957. [PMID: 31864170 DOI: 10.1016/j.ejmech.2019.111957] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/22/2019] [Accepted: 12/08/2019] [Indexed: 02/04/2023]
Abstract
Herein, we report the synthesis and characterization of new amphiphilic phthalocyanines (Pcs), the study of their singlet oxygen generation capabilities, and biological assays to determine their potential as photosensitizers for photodynamic inactivation of bacteria. In particular, Pcs with an ABAB geometry (where A and B refer to differently substituted isoindole constituents) have been synthesized. These molecules are endowed with bulky bis(trifluoromethylphenyl) groups in two facing isoindoles, which hinder aggregation and favour singlet oxygen generation, and pyridinium or alkylammonium moieties in the other two isoindoles. In particular, two water-soluble Pc derivatives (PS-1 and PS-2) have proved to be efficient in the photoinactivation of S. aureus and E. coli, selected as models of Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
| | | | - Cormac Hally
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Montserrat Agut
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017, Barcelona, Spain.
| | - Gema de la Torre
- Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Tomás Torres
- Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain; Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia, C/ Faraday 9, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
11
|
Mantareva V, Gol C, Kussovski V, Durmuş M, Angelov I. Impact of water-soluble zwitterionic Zn(II) phthalocyanines against pathogenic bacteria. ACTA ACUST UNITED AC 2019; 74:183-191. [PMID: 31194695 DOI: 10.1515/znc-2018-0203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/16/2019] [Indexed: 01/18/2023]
Abstract
The photodynamic impact of water-soluble zwitterionic zinc phthalocyanines (ZnPc1-4) was studied on pathogenic bacterial strains after specific light exposure (LED 665 nm). The structural differences between the studied ZnPc1-4 are in the positions and the numbers of substitution groups as well as in the bridging atoms (sulfur or oxygen) between substituents and macrocycle. The three peripherally substituted compounds (ZnPc1-3) are tetra-2-(N-propanesulfonic acid)oxypyridine (ZnPc1), tetra-2-(N-propanesulfonic acid)mercaptopyridine (ZnPc2), and octa-substituted 2-(N-propanesulfonic acid)mercaptopyridine (ZnPc3). The nonperipherally substituted compound is tetra-2-(N-propanesulfonic acid)mercaptopyridine (ZnPc4). The uptake and localization capability are studied on Gram (+) Enterococcus faecalis and Gram (-) Pseudomonas aeruginosa as suspensions and as 48 h biofilms. Relatively high accumulations of ZnPc1-4 show bacteria in suspensions with different cell density. The compounds have complete penetration in E. faecalis biofilms but with nonhomogenous distribution in P. aeruginosa biomass. The cytotoxicity test (Balb/c 3T3 Neutral Red Uptake) with ZnPc1-4 suggests the lack of dark toxicity on normal cells. However, only ZnPc3 has a minimal photocytotoxic effect toward Balb/c 3T3 cells and a comparable high potential in the photoinactivation of pathogenic bacterial species.
Collapse
Affiliation(s)
- Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Bld. 9, 1113 Sofia, Bulgaria, Phone: +35 9 9606 181
| | - Cem Gol
- Bolu Abant Izzet Baysal University, Innovative Food Technologies Development Application and Research Center, Gölköy, Bolu, 14300, Turkey
| | - Vesselin Kussovski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Bld. 26, 1113 Sofia, Bulgaria
| | - Mahmut Durmuş
- Gebze Technical University, Department of Chemistry, Gebze-Kocaeli, 41400, Turkey
| | - Ivan Angelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Bld. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
12
|
Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front Microbiol 2019; 10:539. [PMID: 30988669 PMCID: PMC6452778 DOI: 10.3389/fmicb.2019.00539] [Citation(s) in RCA: 948] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
The acronym ESKAPE includes six nosocomial pathogens that exhibit multidrug resistance and virulence: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. Persistent use of antibiotics has provoked the emergence of multidrug resistant (MDR) and extensively drug resistant (XDR) bacteria, which render even the most effective drugs ineffective. Extended spectrum β-lactamase (ESBL) and carbapenemase producing Gram negative bacteria have emerged as an important therapeutic challenge. Development of novel therapeutics to treat drug resistant infections, especially those caused by ESKAPE pathogens is the need of the hour. Alternative therapies such as use of antibiotics in combination or with adjuvants, bacteriophages, antimicrobial peptides, nanoparticles, and photodynamic light therapy are widely reported. Many reviews published till date describe these therapies with respect to the various agents used, their dosage details and mechanism of action against MDR pathogens but very few have focused specifically on ESKAPE. The objective of this review is to describe the alternative therapies reported to treat ESKAPE infections, their advantages and limitations, potential application in vivo, and status in clinical trials. The review further highlights the importance of a combinatorial approach, wherein two or more therapies are used in combination in order to overcome their individual limitations, additional studies on which are warranted, before translating them into clinical practice. These advances could possibly give an alternate solution or extend the lifetime of current antimicrobials.
Collapse
Affiliation(s)
- Mansura S Mulani
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Ekta E Kamble
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Shital N Kumkar
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Madhumita S Tawre
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Karishma R Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|