1
|
WILCZAK MAGDALENA, SURMAN MAGDALENA, PRZYBYłO MA. Melanoma-derived extracellular vesicles transfer proangiogenic factors. Oncol Res 2025; 33:245-262. [PMID: 39866233 PMCID: PMC11753996 DOI: 10.32604/or.2024.055449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/27/2024] [Indexed: 01/28/2025] Open
Abstract
Angiogenesis, the expansion of pre-existing vascular networks, is crucial for normal organ growth and tissue repair, but is also involved in various pathologies, including inflammation, ischemia, diabetes, and cancer. In solid tumors, angiogenesis supports growth, nutrient delivery, waste removal, and metastasis. Tumors can induce angiogenesis through proangiogenic factors including VEGF, FGF-2, PDGF, angiopoietins, HGF, TNF, IL-6, SCF, tryptase, and chymase. This balance is disrupted in tumors, and extracellular vesicles (EVs) contribute to this by transferring proangiogenic factors and increasing their expression in endothelial cells (ECs). Malignant melanoma, a particular type of skin cancer, accounts for only 1% of skin cancer cases but more than 75% of deaths. Its incidence has risen significantly, with a 40% increase between 2012 and 2022, especially in fair-skinned populations. Advanced metastatic stages have a high mortality due to delayed diagnosis. This review examines the molecular basis of angiogenesis in melanoma, focusing on melanoma-derived EVs and their possible use in new antiangiogenic therapies.
Collapse
Affiliation(s)
- MAGDALENA WILCZAK
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, 30-348, Poland
| | - MAGDALENA SURMAN
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, 30-387, Poland
| | - MAłGORZATA PRZYBYłO
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, 30-387, Poland
| |
Collapse
|
2
|
Chan HW, Kuo DY, Shueng PW, Chuang HY. Visualizing the Tumor Microenvironment: Molecular Imaging Probes Target Extracellular Matrix, Vascular Networks, and Immunosuppressive Cells. Pharmaceuticals (Basel) 2024; 17:1663. [PMID: 39770505 PMCID: PMC11676442 DOI: 10.3390/ph17121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor microenvironment (TME) is a critical factor in cancer progression, driving tumor growth, immune evasion, therapeutic resistance, and metastasis. Understanding the dynamic interactions within the TME is essential for advancing cancer management. Molecular imaging provides a non-invasive, real-time, and longitudinal approach to studying the TME, with techniques such as positron emission tomography (PET), magnetic resonance imaging (MRI), and fluorescence imaging offering complementary strengths, including high sensitivity, spatial resolution, and intraoperative precision. Recent advances in imaging probe development have enhanced the ability to target and monitor specific components of the TME, facilitating early cancer diagnosis, therapeutic monitoring, and deeper insights into tumor biology. By integrating these innovations, molecular imaging offers transformative potential for precision oncology, improving diagnostic accuracy and treatment outcomes through a comprehensive assessment of TME dynamics.
Collapse
Affiliation(s)
- Hui-Wen Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei City 112, Taiwan;
| | - Deng-Yu Kuo
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan
| | - Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei City 112, Taiwan;
| |
Collapse
|
3
|
Herrada AA, Olate-Briones A, Lazo-Amador R, Liu C, Hernández-Rojas B, Riadi G, Escobedo N. Lymph Leakage Promotes Immunosuppression by Enhancing Anti-Inflammatory Macrophage Polarization. Front Immunol 2022; 13:841641. [PMID: 35663931 PMCID: PMC9160822 DOI: 10.3389/fimmu.2022.841641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Lymphatic vasculature is a network of capillaries and vessels capable of draining extracellular fluid back to blood circulation and to facilitate immune cell migration. Although the role of the lymphatic vasculature as coordinator of fluid homeostasis has been extensively studied, the consequences of abnormal lymphatic vasculature function and impaired lymph drainage have been mostly unexplored. Here, by using the Prox1+/- mice with defective lymphatic vasculature and lymphatic leakage, we provide evidence showing that lymph leakage induces an immunosuppressive environment by promoting anti-inflammatory M2 macrophage polarization in different inflammatory conditions. In fact, by using a mouse model of tail lymphedema where lymphatic vessels are thermal ablated leading to lymph accumulation, an increasing number of anti-inflammatory M2 macrophages are found in the lymphedematous tissue. Moreover, RNA-seq analysis from different human tumors shows that reduced lymphatic signature, a hallmark of lymphatic dysfunction, is associated with increased M2 and reduced M1 macrophage signatures, impacting the survival of the patients. In summary, we show that lymphatic vascular leakage promotes an immunosuppressive environment by enhancing anti-inflammatory macrophage differentiation, with relevance in clinical conditions such as inflammatory bowel diseases or cancer.
Collapse
Affiliation(s)
- Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Alexandra Olate-Briones
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Rodrigo Lazo-Amador
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bairon Hernández-Rojas
- Ph.D Program in Sciences Mention in Modeling of Chemical and Biological Systems, Faculty of Engineering, University of Talca, Talca, Chile
| | - Gonzalo Riadi
- Agencia Nacional de Investigación y Desarrollo (ANID) – Millennium Science Initiative Program Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Center for Bioinformatics, Simulation and Modeling, CBSM, Department of Bioinformatics, Faculty of Engineering, University of Talca, Talca, Chile
| | - Noelia Escobedo
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
4
|
Rezzola S, Sigmund EC, Halin C, Ronca R. The lymphatic vasculature: An active and dynamic player in cancer progression. Med Res Rev 2021; 42:576-614. [PMID: 34486138 PMCID: PMC9291933 DOI: 10.1002/med.21855] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022]
Abstract
The lymphatic vasculature has been widely described and explored for its key functions in fluid homeostasis and in the organization and modulation of the immune response. Besides transporting immune cells, lymphatic vessels play relevant roles in tumor growth and tumor cell dissemination. Cancer cells that have invaded into afferent lymphatics are propagated to tumor‐draining lymph nodes (LNs), which represent an important hub for metastatic cell arrest and growth, immune modulation, and secondary dissemination to distant sites. In recent years many studies have reported new mechanisms by which the lymphatic vasculature affects cancer progression, ranging from induction of lymphangiogenesis to metastatic niche preconditioning or immune modulation. In this review, we provide an up‐to‐date description of lymphatic organization and function in peripheral tissues and in LNs and the changes induced to this system by tumor growth and progression. We will specifically focus on the reported interactions that occur between tumor cells and lymphatic endothelial cells (LECs), as well as on interactions between immune cells and LECs, both in the tumor microenvironment and in tumor‐draining LNs. Moreover, the most recent prognostic and therapeutic implications of lymphatics in cancer will be reported and discussed in light of the new immune‐modulatory roles that have been ascribed to LECs.
Collapse
Affiliation(s)
- Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elena C Sigmund
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Aldrich MB, Rasmussen JC, Fife CE, Shaitelman SF, Sevick-Muraca EM. The Development and Treatment of Lymphatic Dysfunction in Cancer Patients and Survivors. Cancers (Basel) 2020; 12:E2280. [PMID: 32823928 PMCID: PMC7466081 DOI: 10.3390/cancers12082280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
Breast-cancer-acquired lymphedema is routinely diagnosed from the appearance of irreversible swelling that occurs as a result of lymphatic dysfunction. Yet in head and neck cancer survivors, lymphatic dysfunction may not always result in clinically overt swelling, but instead contribute to debilitating functional outcomes. In this review, we describe how cancer metastasis, lymph node dissection, and radiation therapy alter lymphatic function, as visualized by near-infrared fluorescence lymphatic imaging. Using custom gallium arsenide (GaAs)-intensified systems capable of detecting trace amounts of indocyanine green administered repeatedly as lymphatic contrast for longitudinal clinical imaging, we show that lymphatic dysfunction occurs with cancer progression and treatment and is an early, sub-clinical indicator of cancer-acquired lymphedema. We show that early treatment of lymphedema can restore lymphatic function in breast cancer and head and neck cancer patients and survivors. The compilation of these studies provides insights to the critical role that the lymphatics and the immune system play in the etiology of lymphedema and associated co-morbidities.
Collapse
Affiliation(s)
- Melissa B. Aldrich
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (M.B.A.); (J.C.R.)
| | - John C. Rasmussen
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (M.B.A.); (J.C.R.)
| | - Caroline E. Fife
- Department of Geriatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- The Wound Care Clinic, CHI St. Luke’s Health, The Woodlands Hospital, The Woodlands, TX 77381, USA
| | - Simona F. Shaitelman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Eva M. Sevick-Muraca
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (M.B.A.); (J.C.R.)
| |
Collapse
|
6
|
Fowler MJ, Cotter JD, Knight BE, Sevick-Muraca EM, Sandberg DI, Sirianni RW. Intrathecal drug delivery in the era of nanomedicine. Adv Drug Deliv Rev 2020; 165-166:77-95. [PMID: 32142739 DOI: 10.1016/j.addr.2020.02.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/17/2019] [Accepted: 02/28/2020] [Indexed: 12/23/2022]
Abstract
Administration of substances directly into the cerebrospinal fluid (CSF) that surrounds the brain and spinal cord is one approach that can circumvent the blood-brain barrier to enable drug delivery to the central nervous system (CNS). However, molecules that have been administered by intrathecal injection, which includes intraventricular, intracisternal, or lumbar locations, encounter new barriers within the subarachnoid space. These barriers include relatively high rates of turnover as CSF clears and potentially inadequate delivery to tissue or cellular targets. Nanomedicine could offer a solution. In contrast to the fate of freely administered drugs, nanomedicine systems can navigate the subarachnoid space to sustain delivery of therapeutic molecules, genes, and imaging agents within the CNS. Some evidence suggests that certain nanomedicine agents can reach the parenchyma following intrathecal administration. Here, we will address the preclinical and clinical use of intrathecal nanomedicine, including nanoparticles, microparticles, dendrimers, micelles, liposomes, polyplexes, and other colloidalal materials that function to alter the distribution of molecules in tissue. Our review forms a foundational understanding of drug delivery to the CSF that can be built upon to better engineer nanomedicine for intrathecal treatment of disease.
Collapse
Affiliation(s)
- M J Fowler
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - J D Cotter
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - B E Knight
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - E M Sevick-Muraca
- Brown Foundation Institute of Molecular Medicine, Center for Molecular Imaging, Houston, TX 77030, United States of America
| | - D I Sandberg
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America; Department of Pediatric Surgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America; Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, United States of America
| | - R W Sirianni
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America.
| |
Collapse
|
7
|
Blei F. Update December 2018. Lymphat Res Biol 2018. [DOI: 10.1089/lrb.2018.29054.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|