1
|
Tripathi MN, Singh K, Yadav U, Srivastava RR, Gangwar M, Nath G, Saxena PS, Srivastava A. SERS based rapid and ultrasensitive detection of Japanese Encephalitis Virus. Antiviral Res 2022; 205:105382. [PMID: 35835290 DOI: 10.1016/j.antiviral.2022.105382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/22/2022]
Abstract
Japanese encephalitis (JE) is a mosquito-borne flavivirus infection named Japanese Encephalitis Virus (JEV), prevalent in Asia-pacific countries, requires an accurate and rapid diagnosis to contain the outbreak of the disease. In cases of low viral load in early-stage infections, this task becomes difficult. Therefore, we have developed a surface-enhanced Raman spectroscopy (SERS) based biosensor for rapid, sensitive, and early-stage detection of JE antigen. In this work, silver nanoparticles were deposited over a glass coverslip and used as a substrate for designing the sensing platform. Silver Nanoparticles have good metallic properties and plasmon activity. Therefore, it amplifies the Raman signals and provides a suitable surface for the SERS substrate. The developed platform has been used for the detection of the Japanese encephalitis virus (JEV). The fabricated sensor shows a linear response from 5ng/mL to 80 ng/mL with a limit of detection (LoD) of ∼7.6 ng/mL. Therefore, this method could be a significant addition to the diagnostic modalities for early, sensitive, and specific diagnoses of JE antigen even at the nanogram level.
Collapse
Affiliation(s)
- Manish Nath Tripathi
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kirti Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Umakant Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rohit Ranjan Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mayank Gangwar
- Viral Research and Diagnostic Laboratory, Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Gopal Nath
- Viral Research and Diagnostic Laboratory, Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Preeti S Saxena
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Anchal Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Su Q, Jiang C, Gou D, Long Y. Surface Plasmon-Assisted Fluorescence Enhancing and Quenching: From Theory to Application. ACS APPLIED BIO MATERIALS 2021; 4:4684-4705. [PMID: 35007020 DOI: 10.1021/acsabm.1c00320] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The integration of surface plasmon resonance and fluorescence yields a multiaspect improvement in surface fluorescence sensing and imaging, leading to a paradigm shift of surface plasmon-assisted fluorescence techniques, for example, surface plasmon enhanced field fluorescence spectroscopy, surface plasmon coupled emission (SPCE), and SPCE imaging. This Review aims to characterize the unique optical property with a common physical interpretation and diverse surface architecture-based measurements. The fundamental electromagnetic theory is employed to comprehensively unveil the fluorophore-surface plasmon interaction, and the associated surface-modification design is liberally highlighted to balance the surface plasmon-induced fluorescence-enhancement efforts and the surface plasmon-caused fluorescence-quenching effects. In particular, all types of surface structures, for example, silicon, carbon, protein, DNA, polymer, and multilayer, are systematically interrogated in terms of component, thickness, stiffness, and functionality. As a highly interdisciplinary and expanding field in physics, optics, chemistry, and surface chemistry, this Review could be of great interest to a broad readership, in particular, among physical chemists, analytical chemists, and in surface-based sensing and imaging studies.
Collapse
Affiliation(s)
- Qiang Su
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, 1066 Xueyuan Street, Nanshan District, Shenzhen 518055, Guangdong, China.,School of Chemistry, University of Birmingham, Edgbaston B15 2TT, Birmingham, United Kingdom
| | - Cheng Jiang
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, 1066 Xueyuan Street, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Yi Long
- Clinical Research Center, Southern University of Science and Technology Hospital, 6019 Liuxian Street, Xili Avenue, Nanshan District, Shenzhen 518055, Guangdong, China
| |
Collapse
|
3
|
Chen M, Cao SH, Li YQ. Surface plasmon-coupled emission imaging for biological applications. Anal Bioanal Chem 2020; 412:6085-6100. [PMID: 32300846 DOI: 10.1007/s00216-020-02635-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/08/2020] [Accepted: 03/31/2020] [Indexed: 11/28/2022]
Abstract
Fluorescence imaging technology has been extensively applied in chemical and biological research profiting from its high sensitivity and specificity. Much attention has been devoted to breaking the light diffraction-limited spatial resolution. However, it remains a great challenge to improve the axial resolution in a way that is accessible in general laboratories. Surface plasmon-coupled emission (SPCE), generated by the interactions between surface plasmons and excited fluorophores in close vicinity of the thin metal film, offers an opportunity for optical imaging with potential application in analysis of molecular and biological systems. Benefiting from the highly directional and distance-dependent properties, SPCE imaging (SPCEi) has displayed excellent performance in bioimaging with improved sensitivity and axial confinement. Herein, we give a brief overview of the development of SPCEi. We describe the unique optical characteristics and constructions of SPCEi systems and highlight recent advances in the use of SPCEi for biological applications. We hope this review provides readers with both the insights and future prospects of SPCEi as a new promising imaging platform for potentially widespread applications in biological research and medical diagnostics. Graphical abstract.
Collapse
Affiliation(s)
- Min Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Shuo-Hui Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
4
|
Abstract
Surface plasmon resonance (SPR) sensors present a challenge when high sensitivity and small FWHM (full width at half maximum) are required to be achieved simultaneously. FWHM is defined by the difference between the two extreme values of the independent variable at which the value of the dependent variable is equal to half of its maximum. A smaller value of FWHM indicates better accuracy of SPR measurements. Theoretically, many authors have claimed the possibility of simultaneously achieving high sensitivity and small FWHM, which in most of the cases has been limited by experimental validation. In this report, an experimental study on the improved surface plasmon resonance (SPR) characteristics of gold over silver bimetallic sensor chips of different film thicknesses is presented. A comparative study of antigen–antibody interaction of the bimetallic chip using a custom-made, low-cost, and portable SPR device based on an angular interrogation scheme of Kretschmann configuration is performed. Pulsed direct current (DC) magnetron-sputtered bimetallic films of gold over silver were used in the construction of the SPR chip. The FWHM and sensitivity of the bimetallic sensors were firstly characterized using standard solutions of known refractive index which were later immobilized with monoclonal anti-immunoglobulin G (IgG) in the construction of the SPR biochip. Spectroscopic measurements such as ultraviolet–visible light spectroscopy (UV–Vis) and Fourier-transform infrared spectroscopy (FTIR) were used for the confirmation of the immobilization of the antibody. The performance of the bimetallic SPR biochip was investigated by exposing the sensor to various concentrations of the target protein. The results indicated that the bimetallic sensors of silver/gold had a 3.5-fold reduced FWHM compared to pure gold-based sensors, indicating a higher detection accuracy. In addition, they exhibited a significant shift in resonance angle as high as 8.5 ± 0.2 due to antigen–antibody interaction, which was ~1.42-fold higher than observed for pure silver-based sensors.
Collapse
|
5
|
Jiang K, Lei X, Li K, Lu Y, Wang P. Fluorescence emission difference with surface plasmon-coupled emission applied in confocal microscopy. OPTICS EXPRESS 2018; 26:2380-2389. [PMID: 29401778 DOI: 10.1364/oe.26.002380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
We combined confocal surface plasmon coupled emission microscopy (C-SPCEM) together with fluorescence emission difference (FED) technique to pursuit super-resolution fluorescent image. Solid or hollow point spread function (PSF) for C-SPCEM is achieved with radially-polarized or circularly-polarized illumination. The reason why PSF can be manipulated by the polarization of illumination light is corroborated by the interaction of fluorescent emitter with vector focal field on the plasmonic substrate. After introduction of FED technique, PSF for C-SPECM can shrunk to around λ/4 in full-width half-maximum, which is unambiguously beyond Rayleigh's diffraction limit. The super-resolution capability of C-SPCEM with FED technique is experimentally demonstrated by imaging aggregated fluorescent beads with 150 nm in diameter.
Collapse
|
6
|
Mulpur P, Podila R, Ramamurthy SS, Kamisetti V, Rao AM. C60 as an active smart spacer material on silver thin film substrates for enhanced surface plasmon coupled emission. Phys Chem Chem Phys 2016; 17:10022-7. [PMID: 25785916 DOI: 10.1039/c4cp06090c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we present the use of C60 as an active spacer material on a silver (Ag) based surface plasmon coupled emission (SPCE) platform. In addition to its primary role of protecting the Ag thin film from oxidation, the incorporation of C60 facilitated the achievement of a 30-fold enhancement in the emission intensity of rhodamine B (RhB) fluorophore. The high signal yield was attributed to the unique π-π interactions between C60 thin films and RhB, which enabled efficient transfer of energy of RhB emission to Ag plasmon modes. Furthermore, minor variations in the C60 film thickness yielded large changes in the enhancement and angularity properties of the SPCE signal, which can be exploited for sensing applications. Finally, the low-cost fabrication process of the Ag-C60 thin film stacks render C60 based SPCE substrates ideal, for the economic and simplistic detection of analytes.
Collapse
Affiliation(s)
- Pradyumna Mulpur
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam 515134, India
| | | | | | | | | |
Collapse
|
7
|
Cai WP, Zhai YY, Cao SH, Liu Q, Weng YH, Xie KX, Lin GC, Li YQ. High performance dual-mode surface plasmon coupled emission imaging apparatus integrating Kretschmann and reverse Kretschmann configurations for flexible measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:013705. [PMID: 26827326 DOI: 10.1063/1.4940193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A Kretschmann (KR) and reverse Kretschmann (RK) dual-mode surface plasmon coupled emission (SPCE) imaging apparatus based on prism coupling was built up. Highly directional and polarized fluorescence images for both RK and KR configurations were obtained. Besides, surface plasmon field-enhanced fluorescence and free space imaging can also be measured conveniently from this apparatus. Combining the high sensitivity of KR mode and the simplicity of RK mode, the multifunctional imaging system is flexible to provide different configurations for imaging applications. Compared to the free space imaging, SPCE imaging provides enhanced fluorescence, especially large enhancement up to about 50 fold in KR configuration. Additionally, the degree of evanescent field enhancement effect was easily estimated experimentally using the apparatus to compare the different imaging configurations. We believed that the dual-mode SPCE imaging apparatus will be useful in fundamental study of plasmon-controlled fluorescence and be a powerful tool for optical imaging, especially for microarray and biological applications.
Collapse
Affiliation(s)
- Wei-Peng Cai
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan-Yun Zhai
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuo-Hui Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qian Liu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Hua Weng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kai-Xin Xie
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guo-Chun Lin
- School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
| | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Ge B, Ma Y, Kuang C, Zhang D, Toussaint KC, You S, Liu X. Resolution-enhanced surface plasmon-coupled emission microscopy. OPTICS EXPRESS 2015; 23:13159-13171. [PMID: 26074569 DOI: 10.1364/oe.23.013159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel fluorescence emission difference technique is proposed for further enhancements of the lateral resolution in surface plasmon-coupled emission microscopy (SPCEM). In the proposed method, the difference between the image with phase modulation by using a 0-2π vortex phase plate (VPP) along with a diaphragm and the original image obtained from SPCEM is used to estimate the spatial distribution of the analyzed sample. By optimizing the size of the diaphragm and the subtractive factor, the lateral resolution can be enhanced by about 20% and 33%, compared with that in SPCEM with a single 0-2π VPP and conventional wide-field fluorescence microscopy, respectively. Related simulation results are presented to verify the capability of the proposed method for improving lateral resolution and reducing imaging distortion. It is believed that the proposed method has potentials to improve the performance of SPCEM, thus facilitating biological observation and research.
Collapse
|
9
|
Wang F, Li D, Jin L, Ren C, Yang D, Que D. Size-dependent coupling between localized surface plasmons and excitons in silicon nitride matrix. OPTICS LETTERS 2013; 38:2832-2834. [PMID: 23903155 DOI: 10.1364/ol.38.002832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The size-dependent coupling between localized surface plasmons (LSPs) and excitons within a silicon nitride (SiN(x)) matrix is investigated. A strong correlation between the photoluminescence (PL) enhancement and this resonance coupling is observed. From the analysis of the relationship between the dipolar resonance peaks of Ag nanostructures with various sizes and those of PL enhancement, we ascribe the enhancement of PL from the SiN(x) matrix by the addition of Ag nanostructures mainly to the LSP resonance coupling.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
10
|
Terakado G, Ning J, Watanabe K, Kano H. High-resolution simultaneous microscopy of refractive index and fluorescent intensity distributions by using localized surface plasmons. APPLIED OPTICS 2013; 52:3324-3328. [PMID: 23669847 DOI: 10.1364/ao.52.003324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
We propose a localized surface plasmon microscope that provides simultaneous imaging of refractive index and fluorescent intensity distributions. We show experimental images of fluorescent and transparent particles under circular pupil illumination to confirm simultaneous high-resolution imaging. Furthermore, we investigate applicability of annular pupil illumination employing two axicons to improve energy efficiency in the fluorescent imaging and find that a brighter image is obtainable by maintaining high spatial resolution for both imaging modes.
Collapse
Affiliation(s)
- Goro Terakado
- Division of Engineering for Composite Functions, Muroran Institute of Technology, Mizumoto 27-1, Muroran, Hokkaido 050-8585, Japan
| | | | | | | |
Collapse
|
11
|
Cai WP, Liu Q, Cao SH, Weng YH, Liu XQ, Li YQ. Prism-Based Surface Plasmon Coupled Emission Imaging. Chemphyschem 2012; 13:3848-51. [DOI: 10.1002/cphc.201200569] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Indexed: 11/06/2022]
|
12
|
Cao SH, Cai WP, Liu Q, Li YQ. Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences? ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2012; 5:317-36. [PMID: 22524220 DOI: 10.1146/annurev-anchem-062011-143208] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Surface plasmon-coupled emission (SPCE) arose from the integration of fluorescence and plasmonics, two rapidly expanding research fields. SPCE is revealing novel phenomena and has potential applications in bioanalysis, medical diagnostics, drug discovery, and genomics. In SPCE, excited fluorophores couple with surface plasmons on a continuous thin metal film; plasmophores radiate into a higher-refractive index medium with a narrow angular distribution. Because of the directional emission, the sensitivity of this technique can be greatly improved with high collection efficiency. This review describes the unique features of SPCE. In particular, we focus on recent advances in SPCE-based analytical platforms and their applications in DNA sensing and the detection of other biomolecules and chemicals.
Collapse
Affiliation(s)
- Shuo-Hui Cao
- Department of Chemistry and Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | | | | | | |
Collapse
|