1
|
Fast X-ray Differential Phase Contrast Imaging with One Exposure and without Movements. Sci Rep 2019; 9:1113. [PMID: 30718674 PMCID: PMC6361880 DOI: 10.1038/s41598-018-37687-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/12/2018] [Indexed: 11/08/2022] Open
Abstract
Grating interferometry X-ray differential phase contrast imaging (GI-XDPCI) has provided enhanced imaging contrast and attracted more and more interests. Currently the low imaging efficiency and increased dose remain to be the bottlenecks in the engineering applications of GI-XDPCI. Different from the widely-used X-ray absorption contrast imaging (XACI) found in hospitals and factories, GI-XDPCI involves a grating stepping procedure that is time-consuming and leads to a significantly increased X-ray exposure time. In this paper, we report a fast GI-XDPCI method without movements by designing a new absorption grating. There is no grating stepping in this approach, and all components remain stationary during the imaging. Three kinds of imaging contrasts are provided with greatly reduced time. This work is comprised of a numerical study of the method and its verification using a sub-set of the dataset measured with a standard GI-XDPCI system at the beam line BL13W1 of the Shanghai Synchrotron Radiation Facility (SSRF). These results have validated the presented method.
Collapse
|
2
|
Marschner M, Birnbacher L, Willner M, Chabior M, Herzen J, Noël PB, Pfeiffer F. Revising the lower statistical limit of x-ray grating-based phase-contrast computed tomography. PLoS One 2017; 12:e0184217. [PMID: 28877253 PMCID: PMC5587302 DOI: 10.1371/journal.pone.0184217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/21/2017] [Indexed: 11/18/2022] Open
Abstract
Phase-contrast x-ray computed tomography (PCCT) is currently investigated as an interesting extension of conventional CT, providing high soft-tissue contrast even if examining weakly absorbing specimen. Until now, the potential for dose reduction was thought to be limited compared to attenuation CT, since meaningful phase retrieval fails for scans with very low photon counts when using the conventional phase retrieval method via phase stepping. In this work, we examine the statistical behaviour of the reverse projection method, an alternative phase retrieval approach and compare the results to the conventional phase retrieval technique. We investigate the noise levels in the projections as well as the image quality and quantitative accuracy of the reconstructed tomographic volumes. The results of our study show that this method performs better in a low-dose scenario than the conventional phase retrieval approach, resulting in lower noise levels, enhanced image quality and more accurate quantitative values. Overall, we demonstrate that the lower statistical limit of the phase stepping procedure as proposed by recent literature does not apply to this alternative phase retrieval technique. However, further development is necessary to overcome experimental challenges posed by this method which would enable mainstream or even clinical application of PCCT.
Collapse
Affiliation(s)
- Mathias Marschner
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
- * E-mail:
| | - Lorenz Birnbacher
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
| | - Marian Willner
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, 81675 München, Germany
| | - Michael Chabior
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
| | - Julia Herzen
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, 81675 München, Germany
| | - Peter B. Noël
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, 81675 München, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, 81675 München, Germany
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
3
|
Abstract
Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT.
Collapse
Affiliation(s)
- Jian Fu
- Research center of digital radiation imaging, Beijing University of Aeronautics and Astronautics, Beijing, People’s Republic of China
- * E-mail:
| | - Zhenzhong Liu
- Research center of digital radiation imaging, Beijing University of Aeronautics and Astronautics, Beijing, People’s Republic of China
| | - Jingzheng Wang
- Research center of digital radiation imaging, Beijing University of Aeronautics and Astronautics, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Fu J, Li C, Liu Z. Analysis and Correction of Dynamic Geometric Misalignment for Nano-Scale Computed Tomography at BSRF. PLoS One 2015; 10:e0141682. [PMID: 26509552 PMCID: PMC4624801 DOI: 10.1371/journal.pone.0141682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022] Open
Abstract
Due to its high spatial resolution, synchrotron radiation x-ray nano-scale computed tomography (nano-CT) is sensitive to misalignments in scanning geometry, which occurs quite frequently because of mechanical errors in manufacturing and assembly or from thermal expansion during the time-consuming scanning. Misalignments degrade the imaging results by imposing artifacts on the nano-CT slices. In this paper, the geometric misalignment of the synchrotron radiation nano-CT has been analyzed by partial derivatives on the CT reconstruction algorithm and a correction method, based on cross correlation and least-square sinusoidal fitting, has been reported. This work comprises a numerical study of the method and its experimental verification using a dataset measured with the full-field transmission x-ray microscope nano-CT at the beamline 4W1A of the Beijing Synchrotron Radiation Facility. The numerical and experimental results have demonstrated the validity of the proposed approach. It can be applied for dynamic geometric misalignment and needs neither phantom nor additional correction scanning. We expect that this method will simplify the experimental operation of synchrotron radiation nano-CT.
Collapse
Affiliation(s)
- Jian Fu
- Research center of digital radiation imaging, Beijing University of Aeronautics and Astronautics, Beijing, People's Republic of China
| | - Chen Li
- Research center of digital radiation imaging, Beijing University of Aeronautics and Astronautics, Beijing, People's Republic of China
| | - Zhenzhong Liu
- Research center of digital radiation imaging, Beijing University of Aeronautics and Astronautics, Beijing, People's Republic of China
| |
Collapse
|
5
|
Fu J, Hu X, Velroyen A, Bech M, Jiang M, Pfeiffer F. 3D algebraic iterative reconstruction for cone-beam x-ray differential phase-contrast computed tomography. PLoS One 2015; 10:e0117502. [PMID: 25775480 PMCID: PMC4361763 DOI: 10.1371/journal.pone.0117502] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/23/2014] [Indexed: 11/20/2022] Open
Abstract
Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.
Collapse
Affiliation(s)
- Jian Fu
- Research Center of Digital Radiation Imaging and Biomedical Imaging, Beijing University of Aeronautics and Astronautics, 100191 Beijing, People’s Republic of China
- * E-mail:
| | - Xinhua Hu
- Research Center of Digital Radiation Imaging and Biomedical Imaging, Beijing University of Aeronautics and Astronautics, 100191 Beijing, People’s Republic of China
| | - Astrid Velroyen
- Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany
| | - Martin Bech
- Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany
- Lund University, 22185 Lund, Sweden
| | - Ming Jiang
- School of Mathematical Sciences, Peking University, 100871 Beijing, People’s Republic of China
| | - Franz Pfeiffer
- Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany
| |
Collapse
|
6
|
Li J, Sun Y, Zhu P. A theoretically exact reconstruction algorithm for helical cone-beam differential phase-contrast computed tomography. Phys Med Biol 2013; 58:5421-32. [PMID: 23877274 DOI: 10.1088/0031-9155/58/16/5421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Differential phase-contrast computed tomography (DPC-CT) reconstruction problems are usually solved by using parallel-, fan- or cone-beam algorithms. For rod-shaped objects, the x-ray beams cannot recover all the slices of the sample at the same time. Thus, if a rod-shaped sample is required to be reconstructed by the above algorithms, one should alternately perform translation and rotation on this sample, which leads to lower efficiency. The helical cone-beam CT may significantly improve scanning efficiency for rod-shaped objects over other algorithms. In this paper, we propose a theoretically exact filter-backprojection algorithm for helical cone-beam DPC-CT, which can be applied to reconstruct the refractive index decrement distribution of the samples directly from two-dimensional differential phase-contrast images. Numerical simulations are conducted to verify the proposed algorithm. Our work provides a potential solution for inspecting the rod-shaped samples using DPC-CT, which may be applicable with the evolution of DPC-CT equipments.
Collapse
Affiliation(s)
- Jing Li
- School of Information and Communication Engineering, Dalian University of Technology, Dalian, Liaoning Province 116023, People's Republic of China.
| | | | | |
Collapse
|