1
|
Sun J, Wu J, Wu S, Goswami R, Girardo S, Cao L, Guck J, Koukourakis N, Czarske JW. Quantitative phase imaging through an ultra-thin lensless fiber endoscope. LIGHT, SCIENCE & APPLICATIONS 2022; 11:204. [PMID: 35790748 PMCID: PMC9255502 DOI: 10.1038/s41377-022-00898-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 05/29/2023]
Abstract
Quantitative phase imaging (QPI) is a label-free technique providing both morphology and quantitative biophysical information in biomedicine. However, applying such a powerful technique to in vivo pathological diagnosis remains challenging. Multi-core fiber bundles (MCFs) enable ultra-thin probes for in vivo imaging, but current MCF imaging techniques are limited to amplitude imaging modalities. We demonstrate a computational lensless microendoscope that uses an ultra-thin bare MCF to perform quantitative phase imaging with microscale lateral resolution and nanoscale axial sensitivity of the optical path length. The incident complex light field at the measurement side is precisely reconstructed from the far-field speckle pattern at the detection side, enabling digital refocusing in a multi-layer sample without any mechanical movement. The accuracy of the quantitative phase reconstruction is validated by imaging the phase target and hydrogel beads through the MCF. With the proposed imaging modality, three-dimensional imaging of human cancer cells is achieved through the ultra-thin fiber endoscope, promising widespread clinical applications.
Collapse
Affiliation(s)
- Jiawei Sun
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany.
| | - Jiachen Wu
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, 100084, Beijing, China
| | - Song Wu
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Ruchi Goswami
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Salvatore Girardo
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Liangcai Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, 100084, Beijing, China
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Nektarios Koukourakis
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany.
| | - Juergen W Czarske
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Institute of Applied Physics, TU Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Digital Holographic Interferometry for the Measurement of Symmetrical Temperature Fields in Liquids. PHOTONICS 2021. [DOI: 10.3390/photonics8060200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, we present a method of quantitatively measuring in real-time the dynamic temperature field change and visualization of volumetric temperature fields generated by a 2D axial-symmetric heated fluid from a pulsatile jet in a water tank through off-axis digital holographic interferometry. A Mach-Zehnder interferometer on portable platform was built for the experimental investigation. The pulsatile jet was submerged in a water tank and fed with water with higher temperature. Tomographic approach was used to reconstruct the temperature fields through the Abel Transform and the filtered back-projection. Averaged results, tomographic view, standard deviation and errors are presented. The presented results reveal digital holographic interferometry as a powerful technique to visualize temperature fields in flowing liquids and gases.
Collapse
|
3
|
Schnitzler L, Neutsch K, Schellenberg F, Hofmann MR, Gerhardt NC. Confocal laser scanning holographic microscopy of buried structures. APPLIED OPTICS 2021; 60:A8-A14. [PMID: 33690350 DOI: 10.1364/ao.403687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
In this paper, we present a confocal laser scanning holographic microscope for the investigation of buried structures. The multimodal system combines high diffraction limited resolution and high signal-to-noise-ratio with the ability of phase acquisition. The amplitude and phase imaging capabilities of the system are shown on a test target. For the investigation of buried integrated semiconductor structures, we expand our system with an optical beam induced current modality that provides additional structure-sensitive contrast. We demonstrate the performance of the multimodal system by imaging the buried structures of a microcontroller through the silicon backside of its housing in reflection geometry.
Collapse
|
4
|
Finkeldey M, Göring L, Brenner C, Hofmann M, Gerhardt NC. Depth-filtering in common-path digital holographic microscopy. OPTICS EXPRESS 2017; 25:19398-19407. [PMID: 29041134 DOI: 10.1364/oe.25.019398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate a method to select different layers in a sample using a low coherent gating approach combined with a stable common-path quantitative phase imaging microscopy setup. The depth-filtering technique allows us to suppress the negative effects generated by multiple interference patterns of overlaying optical interfaces in the sample. It maintains the compact and stable common-path setup, while enabling images with a high phase sensitivity and acquisition speed. We use a holographic microscope in reflective geometry with a non-tunable low coherence light source. First results of this technique are shown by imaging the hardware layer of a standard micro-controller through its thinned substrate.
Collapse
|
5
|
Nardin G, Colomb T, Emery Y, Moser C. Versatile spectral modulation of a broadband source for digital holographic microscopy. OPTICS EXPRESS 2016; 24:27791-27804. [PMID: 27906347 DOI: 10.1364/oe.24.027791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate the potential of spatial light modulators for the spectral control of a broadband source in digital holographic microscopy. Used in a 'pulse-shaping' geometry, the spatial light modulator provides a versatile control over the bandwidth and wavelength of the light source. The control of these properties enables adaptation to various experimental conditions. As a first application, we show that the source bandwidth can be adapted to the off-axis geometry to provide quantitative phase imaging over the whole field of view. As a second application, we generate sequences of appropriate wavelengths for a hierarchical optical phase unwrapping algorithm, which enables the measurement of the topography of high-aspect ratio structures without phase ambiguity. Examples are given with step heights up to 50 µm.
Collapse
|
6
|
Koukourakis N, Fregin B, König J, Büttner L, Czarske JW. Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star. OPTICS EXPRESS 2016; 24:22074-87. [PMID: 27661942 DOI: 10.1364/oe.24.022074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Imaging-based flow measurement techniques, like particle image velocimetry (PIV), are vulnerable to time-varying distortions like refractive index inhomogeneities or fluctuating phase boundaries. Such distortions strongly increase the velocity error, as the position assignment of the tracer particles and the decrease of image contrast exhibit significant uncertainties. We demonstrate that wavefront shaping based on spatially distributed guide stars has the potential to significantly reduce the measurement uncertainty. Proof of concept experiments show an improvement by more than one order of magnitude. Possible applications for the wavefront shaping PIV range from measurements in jets and film flows to biomedical applications.
Collapse
|
7
|
Jaedicke V, Goebel S, Koukourakis N, Gerhardt NC, Welp H, Hofmann MR. Multiwavelength phase unwrapping and aberration correction using depth filtered digital holography. OPTICS LETTERS 2014; 39:4160-4163. [PMID: 25121676 DOI: 10.1364/ol.39.004160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this Letter, we present a new approach to processing data from a standard spectral domain optical coherence tomography (OCT) system using depth filtered digital holography (DFDH). Intensity-based OCT processing has an axial resolution of the order of a few micrometers. When the phase information is used to obtain optical path length differences, subwavelength accuracy can be achieved, but this limits the resolvable step heights to half of the wavelength of the system. Thus there is a metrology gap between phase- and intensity-based methods. Our concept addresses this metrology gap by combining DFHD with multiwavelength phase unwrapping. Additionally, the measurements are corrected for aberrations. Here, we present proof of concept measurements of a structured semiconductor sample.
Collapse
|