1
|
Žurauskas M, Iyer RR, Boppart SA. Simultaneous 4-phase-shifted full-field optical coherence microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:981-992. [PMID: 33680554 PMCID: PMC7901320 DOI: 10.1364/boe.417183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 05/03/2023]
Abstract
A new method is presented for full-field optical coherence tomography imaging, which permits capturing single shot phase sensitive imaging through simultaneous acquisition of four phase-shifted images with a single camera using unpolarized light for object illumination. Our method retains the full dynamic range of the camera by using different areas of a single camera sensor to capture each image. We demonstrate the performance of our method by imaging phantoms and live cultures of fibroblast, cancer, and macrophage cells to achieve 59 dB sensitivity with isotropic resolution down to 1 μm, and displacement sensitivity down to 0.1 nm. Our method can serve as a platform for developing high resolution imaging systems because when used in conjunction with broadband spatially incoherent light sources, the resolution is not affected by optical aberrations or speckle noise.
Collapse
Affiliation(s)
- Mantas Žurauskas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Hua Y, Zhou G, Liu W, Xin M, Kärtner FX, Chang G. Femtosecond two-color source synchronized at 100-as-precision based on SPM-enabled spectral selection. OPTICS LETTERS 2020; 45:3410-3413. [PMID: 32630858 DOI: 10.1364/ol.391161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate both numerically and experimentally that self-phase modulation-enabled spectral selection generates wavelength tunable energetic pulses that are tightly synchronized to the excitation pulses. The synchronization quantified by relative timing jitter is at the 100-as precision level, at least 10 times lower than can be achieved by Raman soliton pulses derived from the same source laser. This ultrafast two-color source is suitable for many important applications that require tight pulse synchronization.
Collapse
|
3
|
Zhao Y, Maguluri G, Ferguson RD, Tu H, Paul K, Boppart SA, Llano DA, Iftimia N. Two-photon microscope using a fiber-based approach for supercontinuum generation and light delivery to a small-footprint optical head. OPTICS LETTERS 2020; 45:909-912. [PMID: 32058502 PMCID: PMC7316260 DOI: 10.1364/ol.381571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/06/2020] [Indexed: 05/20/2023]
Abstract
In this Letter, we report a low-cost, portable, two-photon excitation fluorescence microscopy imager that uses a fiber-based approach for both femtosecond supercontinuum (SC) generation and light delivery to the optical head. The SC generation is based on a tapered polarization-maintaining photonic crystal fiber that uses pre-chirped femtosecond narrowband pulses to generate a coherent SC spectrum with a bandwidth of approximately 300 nm. Using this approach, high-power, near-transform-limited, wavelength-selectable SC pulses are generated and directly delivered to the imaging optical head. Preliminary testing of this imager on brain slices is presented, demonstrating a high signal-to-noise ratio and sub-cellular imaging capabilities to a depth of approximately 200 µm. These results demonstrate the suitability of the technology for ex vivo and potentially in vivo cellular-level biomedical imaging applications.
Collapse
Affiliation(s)
- Youbo Zhao
- Physical Sciences Inc., 20 New England Business Center Dr., Andover, Massachusetts 01810, USA
| | - Gopi Maguluri
- Physical Sciences Inc., 20 New England Business Center Dr., Andover, Massachusetts 01810, USA
| | - R. Daniel Ferguson
- Physical Sciences Inc., 20 New England Business Center Dr., Andover, Massachusetts 01810, USA
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Ave., Urbana, Illinois 61822, USA
| | - Kush Paul
- Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Ave., Urbana, Illinois 61822, USA
- Department of Molecular and Integrative Physiology, University of Illinois, 405 N. Mathews Ave., Urbana, Illinois 61822, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Ave., Urbana, Illinois 61822, USA
| | - Daniel A. Llano
- Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Ave., Urbana, Illinois 61822, USA
- Department of Molecular and Integrative Physiology, University of Illinois, 405 N. Mathews Ave., Urbana, Illinois 61822, USA
| | - Nicusor Iftimia
- Physical Sciences Inc., 20 New England Business Center Dr., Andover, Massachusetts 01810, USA
| |
Collapse
|
4
|
Qin Y, Batjargal O, Cromey B, Kieu K. All-fiber high-power 1700 nm femtosecond laser based on optical parametric chirped-pulse amplification. OPTICS EXPRESS 2020; 28:2317-2325. [PMID: 32121924 PMCID: PMC7053498 DOI: 10.1364/oe.384185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 05/09/2023]
Abstract
We present the design and construction of an all-fiber high-power optical parametric chirped-pulse amplifier working at 1700 nm, an important wavelength for bio-photonics and medical treatments. The laser delivers 1.42 W of output average power at 1700 nm, which corresponds to ∼40 nJ pulse energy. The pulse can be de-chirped with a conventional grating pair compressor to ∼450 fs. Furthermore, the laser has a stable performance with relative intensity noise typically below the -130 dBc/Hz level for the idler pulses at 1700 nm from 10kHz to 16.95 MHz, half of the laser repetition rate f/2.
Collapse
Affiliation(s)
- Yukun Qin
- College of Optical Sciences, University of Arizona, 1630 E. University Blvd, Tucson, Arizona 85721, USA
| | - Orkhongua Batjargal
- College of Optical Sciences, University of Arizona, 1630 E. University Blvd, Tucson, Arizona 85721, USA
| | - Benjamin Cromey
- College of Optical Sciences, University of Arizona, 1630 E. University Blvd, Tucson, Arizona 85721, USA
| | - Khanh Kieu
- College of Optical Sciences, University of Arizona, 1630 E. University Blvd, Tucson, Arizona 85721, USA
| |
Collapse
|
5
|
Cui Q, Chen Z, Liu Q, Zhang Z, Luo Q, Fu L. Visible continuum pulses based on enhanced dispersive wave generation for endogenous fluorescence imaging. BIOMEDICAL OPTICS EXPRESS 2017; 8:4026-4036. [PMID: 28966844 PMCID: PMC5611920 DOI: 10.1364/boe.8.004026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
In this study, we demonstrate endogenous fluorescence imaging using visible continuum pulses based on 100-fs Ti:sapphire oscillator and a nonlinear photonic crystal fiber. Broadband (500-700 nm) and high-power (150 mW) continuum pulses are generated through enhanced dispersive wave generation by pumping femtosecond pulses at the anomalous dispersion region near zero-dispersion wavelength of high-nonlinear photonic crystal fibers. We also minimize the continuum pulse width by determining the proper fiber length. The visible-wavelength two-photon microscopy produces NADH and tryptophan images of mice tissues simultaneously. Our 500-700 nm continuum pulses support extending nonlinear microscopy to visible wavelength range that is inaccessible to 100-fs Ti:sapphire oscillators and other applications requiring visible laser pulses.
Collapse
Affiliation(s)
- Quan Cui
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhongyun Chen
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qian Liu
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhihong Zhang
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingming Luo
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ling Fu
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
6
|
Ghosh P, Sarkar S. Versatile dispersion characteristics of water solution of glycerine in selective filling of holes in photonic crystal fibers. APPLIED OPTICS 2017; 56:2927-2936. [PMID: 28375263 DOI: 10.1364/ao.56.002927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Using a glycerine-water solution with various concentrations, we investigate the dispersion characteristics of photonic crystal fibers by selective filling of holes. Our analysis is based on a simple but accurate semi-vectorial solution of Helmholtz's equation by the finite difference method devised with a mode-field convergence technique and crosschecked by results with those from a deeply involved multipole method. Significantly, a better ultra-flatness but near-zero group velocity dispersion is revealed with a 20% glycerine-water solution that is superior to pure water of a very recent case when the holes of the first ring of the fiber are filled. This versatile effect in management of holes of identical diameter with liquid is expected to play a guiding role in studies of supercontinuum generation.
Collapse
|
7
|
Liu X, Svane AS, Lægsgaard J, Tu H, Boppart SA, Turchinovich D. Progress in Cherenkov femtosecond fiber lasers. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2016; 49:023001. [PMID: 27110037 PMCID: PMC4839584 DOI: 10.1088/0022-3727/49/2/023001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems - broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.
Collapse
Affiliation(s)
- Xiaomin Liu
- DTU Fotonik, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Ask S. Svane
- DTU Fotonik, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jesper Lægsgaard
- DTU Fotonik, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Haohua Tu
- Biophotonics Imaging Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Stephen A. Boppart
- Biophotonics Imaging Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Dmitry Turchinovich
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
8
|
High Resolution Optical Coherence Tomography for Bio-Imaging. FRONTIERS IN BIOPHOTONICS FOR TRANSLATIONAL MEDICINE 2016. [DOI: 10.1007/978-981-287-627-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|