1
|
Dreimann M, Wahlert F, Roling S, Treusch R, Plönjes E, Zacharias H. Development and performance simulations of a soft X-ray and XUV split-and-delay unit at beamlines FL23/24 at FLASH2 for time-resolved two-color pump-probe experiments. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1168-1178. [PMID: 39102362 PMCID: PMC11371028 DOI: 10.1107/s160057752400609x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/23/2024] [Indexed: 08/07/2024]
Abstract
The split-and-delay unit (SDU) at FLASH2 will be upgraded to enable the simultaneous operation of two temporally, spatially and spectrally separated probe beams when the free-electron laser undulators are operated in a two-color scheme. By means of suitable thin filters and an optical grating beam path a wide range of combinations of photon energies in the spectral range from 150 eV to 780 eV can be chosen. In this paper, simulations of the spectral transmission and performance parameters of the filter technique are discussed, along with a monochromator with dispersion compensation presently under construction.
Collapse
Affiliation(s)
- Matthias Dreimann
- Center for Soft NanoscienceUniversität MünsterBusso-Peus-Strasse 1048149MünsterGermany
| | - Frank Wahlert
- Physikalisches InstitutUniversität MünsterWilhelm-Klemm-Strasse 1048149MünsterGermany
| | - Sebastian Roling
- Physikalisches InstitutUniversität MünsterWilhelm-Klemm-Strasse 1048149MünsterGermany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Elke Plönjes
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Helmut Zacharias
- Center for Soft NanoscienceUniversität MünsterBusso-Peus-Strasse 1048149MünsterGermany
| |
Collapse
|
2
|
Dreimann M, Wahlert F, Eckermann D, Rosenthal F, Roling S, Reiker T, Kuhlmann M, Toleikis S, Brachmanski M, Treusch R, Plönjes E, Siemer B, Zacharias H. The soft X-ray and XUV split-and-delay unit at beamlines FL23/24 at FLASH2. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:479-489. [PMID: 36891862 PMCID: PMC10000806 DOI: 10.1107/s1600577523000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
A split-and-delay unit for the extreme ultraviolet and soft X-ray spectral regions has been built which enables time-resolved experiments at beamlines FL23 and FL24 at the Free-electron LASer in Hamburg (FLASH). Geometric wavefront splitting at a sharp edge of a beam splitting mirror is applied to split the incoming soft X-ray pulse into two beams. Ni and Pt coatings at grazing incidence angles have been chosen in order to cover the whole spectral range of FLASH2 and beyond, up to hν = 1800 eV. In the variable beam path with a grazing incidence angle of ϑd = 1.8°, the total transmission (T) ranges are of the order of 0.48 < T < 0.84 for hν < 100 eV and T > 0.50 for 100 eV < hν < 650 eV with the Ni coating, and T > 0.06 for hν < 1800 eV for the Pt coating. For a fixed beam path with a grazing incidence angle of ϑf = 1.3°, a transmission of T > 0.61 with the Ni coating and T > 0.23 with a Pt coating is achieved. Soft X-ray pump/soft X-ray probe experiments are possible within a delay range of -5 ps < Δt < +18 ps with a nominal time resolution of tr = 66 as and a measured timing jitter of tj = 121 ± 2 as. First experiments with the split-and-delay unit determined the averaged coherence time of FLASH2 to be τc = 1.75 fs at λ = 8 nm, measured at a purposely reduced coherence of the free-electron laser.
Collapse
Affiliation(s)
- Matthias Dreimann
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Frank Wahlert
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Dennis Eckermann
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Felix Rosenthal
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Sebastian Roling
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Tobias Reiker
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Marion Kuhlmann
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Sven Toleikis
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Maciej Brachmanski
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Elke Plönjes
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Björn Siemer
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Helmut Zacharias
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| |
Collapse
|
3
|
Huang C, Yuan B, Zhang H, Zhao Q, Li P, Chen X, Yun Y, Chen G, Feng M, Li Y. Investigation on thermokinetic suppression of ammonium polyphosphate on sucrose dust deflagration: Based on flame propagation, thermal decomposition and residue analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123653. [PMID: 32827861 DOI: 10.1016/j.jhazmat.2020.123653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
In this investigation, ammonium polyphosphate (APP) is applied to suppress the deflagration of sucrose dust. Through the systematic research on flame propagation images and temperature, decomposition behavior of powder samples and the compositions of deflagration residue, the suppression performance and mechanism of APP on sucrose deflagration are profoundly summarized. Timing diagrams show that APP contributes to reduce deflagration flame brightness, increases ignition delay time and flame fault area. The minimum inerting concentration of APP for sucrose deflagration is determined to be 8 %. From the collected deflagration flame temperature curves, it is confirmed that APP can delay peak temperature arrival time, weaken temperature fluctuation, and decrease peak values of flame temperature and temperature rising rate. Through the analysis on thermal decomposition of samples and deflagration residue, it is reflected that APP has superior composite suppression effect. It can not only absorb reaction heat, but also decrease deflagration exotherm to improve thermal stability of sucrose particles. Thus, the easily oxidized components in sucrose are protected, and deflagration intensity is effectively weakened. This work provides a new solution for prevention and suppression deflagration of dust waste in sugar industry.
Collapse
Affiliation(s)
- Chuyuan Huang
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, 430070, China
| | - Bihe Yuan
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, 430070, China.
| | - Hongming Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qi Zhao
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, 430070, China
| | - Ping Li
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, 430070, China.
| | - Xianfeng Chen
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, 430070, China.
| | - Yalong Yun
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, 430070, China; The 713 Research Institute of China Shipbuilding Industry Corporation, Zhengzhou, 450000, China
| | - Gongqing Chen
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, 430070, China
| | - Mengmeng Feng
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Li
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
4
|
Kärcher V, Roling S, Samoylova L, Buzmakov A, Zastrau U, Appel K, Yurkov M, Schneidmiller E, Siewert F, Zacharias H. Impact of real mirror profiles inside a split-and-delay unit on the spatial intensity profile in pump/probe experiments at the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:350-361. [PMID: 33399587 PMCID: PMC7842232 DOI: 10.1107/s1600577520014563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/03/2020] [Indexed: 05/08/2023]
Abstract
For the High-Energy-Density (HED) beamline at the SASE2 undulator of the European XFEL, a hard X-ray split-and-delay unit (SDU) has been built enabling time-resolved pump/probe experiments with photon energies between 5 keV and 24 keV. The optical layout of the SDU is based on geometrical wavefront splitting and multilayer Bragg mirrors. Maximum delays between Δτ = ±1 ps at 24 keV and Δτ = ±23 ps at 5 keV will be possible. Time-dependent wavefront propagation simulations were performed by means of the Synchrotron Radiation Workshop (SRW) software in order to investigate the impact of the optical layout, including diffraction on the beam splitter and recombiner edges and the three-dimensional topography of all eight mirrors, on the spatio-temporal properties of the XFEL pulses. The radiation is generated from noise by the code FAST which simulates the self-amplified spontaneous emission (SASE) process. A fast Fourier transformation evaluation of the disturbed interference pattern yields for ideal mirror surfaces a coherence time of τc = 0.23 fs and deduces one of τc = 0.21 fs for the real mirrors, thus with an error of Δτ = 0.02 fs which is smaller than the deviation resulting from shot-to-shot fluctuations of SASE2 pulses. The wavefronts are focused by means of compound refractive lenses in order to achieve fluences of a few hundred mJ mm-2 within a spot width of 20 µm (FWHM) diameter. Coherence effects and optics imperfections increase the peak intensity between 200 and 400% for pulse delays within the coherence time. Additionally, the influence of two off-set mirrors in the HED beamline are discussed. Further, we show the fluence distribution for Δz = ±3 mm around the focal spot along the optical axis. The simulations show that the topographies of the mirrors of the SDU are good enough to support X-ray pump/X-ray probe experiments.
Collapse
Affiliation(s)
- V. Kärcher
- Physikalisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - S. Roling
- Physikalisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | | | - A. Buzmakov
- FSRC ‘Crystallography and Photonics’ RAS, 119333 Moscow, Russia
| | - U. Zastrau
- European XFEL GmbH, 22869 Schenefeld, Germany
| | - K. Appel
- European XFEL GmbH, 22869 Schenefeld, Germany
| | - M. Yurkov
- Deutsches Elektronen-Synchrotron, 22603 Hamburg, Germany
| | | | - F. Siewert
- Helmholtz-Zentrum Berlin für Materialien und Energie, Department Optics and Beamlines, 12489 Berlin, Germany
| | - H. Zacharias
- Physikalisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| |
Collapse
|
5
|
Study of Thermal Effect in the Interaction of Nanosecond Capillary Discharge Extreme Ultraviolet Laser with Copper. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app10010214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Interaction of Extreme Ultraviolet (EUV) laser with matters is an attractive subject since novel phenomena always occur under the effect of high energy photons. In this paper, the thermal effect involved in the interaction of a capillary discharge 46.9 nm laser with copper was studied theoretically and experimentally. The temperature variation of the laser-irradiated region of copper was calculated. According to the results, the copper surface was ablated obviously and presented the trace of melting, evaporation, and resolidification, which suggested the thermal effect occurred on the surface during the laser irradiation.
Collapse
|
6
|
Klimešová E, Kulyk O, Gu Y, Dittrich L, Korn G, Hajdu J, Krikunova M, Andreasson J. Plasma channel formation in NIR laser-irradiated carrier gas from an aerosol nanoparticle injector. Sci Rep 2019; 9:8851. [PMID: 31221980 PMCID: PMC6586673 DOI: 10.1038/s41598-019-45120-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/22/2019] [Indexed: 11/30/2022] Open
Abstract
Aerosol nanoparticle injectors are fundamentally important for experiments where container-free sample handling is needed to study isolated nanoparticles. The injector consists of a nebuliser, a differential pumping unit, and an aerodynamic lens to create and deliver a focused particle beam to the interaction point inside a vacuum chamber. The tightest focus of the particle beam is close to the injector tip. The density of the focusing carrier gas is high at this point. We show here how this gas interacts with a near infrared laser pulse (800 nm wavelength, 120 fs pulse duration) at intensities approaching 1016 Wcm-2. We observe acceleration of gas ions to kinetic energies of 100s eV and study their energies as a function of the carrier gas density. Our results indicate that field ionisation by the intense near-infrared laser pulse opens up a plasma channel behind the laser pulse. The observations can be understood in terms of a Coulomb explosion of the created underdense plasma channel. The results can be used to estimate gas background in experiments with the injector and they open up opportunities for a new class of studies on electron and ion dynamics in nanoparticles surrounded by a low-density gas.
Collapse
Affiliation(s)
- Eva Klimešová
- ELI Beamlines, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic.
| | - Olena Kulyk
- ELI Beamlines, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Yanjun Gu
- ELI Beamlines, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Laura Dittrich
- ELI Beamlines, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
- Technische Universität Berlin, Institut für Optik und Atomare Physik, ER 1-1, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Georg Korn
- ELI Beamlines, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Janos Hajdu
- ELI Beamlines, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24, Uppsala, Sweden
| | - Maria Krikunova
- ELI Beamlines, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
- Technische Universität Berlin, Institut für Optik und Atomare Physik, ER 1-1, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Jakob Andreasson
- ELI Beamlines, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
- Chalmers University of Technology, Department of Physics, Göteborg, Sweden
| |
Collapse
|
7
|
Hantke MF, Bielecki J, Kulyk O, Westphal D, Larsson DSD, Svenda M, Reddy HKN, Kirian RA, Andreasson J, Hajdu J, Maia FRNC. Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams. IUCRJ 2018; 5:673-680. [PMID: 30443352 PMCID: PMC6211534 DOI: 10.1107/s2052252518010837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/26/2018] [Indexed: 05/25/2023]
Abstract
Ultra-bright femtosecond X-ray pulses generated by X-ray free-electron lasers (XFELs) can be used to image high-resolution structures without the need for crystallization. For this approach, aerosol injection has been a successful method to deliver 70-2000 nm particles into the XFEL beam efficiently and at low noise. Improving the technique of aerosol sample delivery and extending it to single proteins necessitates quantitative aerosol diagnostics. Here a lab-based technique is introduced for Rayleigh-scattering microscopy allowing us to track and size aerosolized particles down to 40 nm in diameter as they exit the injector. This technique was used to characterize the 'Uppsala injector', which is a pioneering and frequently used aerosol sample injector for XFEL single-particle imaging. The particle-beam focus, particle velocities, particle density and injection yield were measured at different operating conditions. It is also shown how high particle densities and good injection yields can be reached for large particles (100-500 nm). It is found that with decreasing particle size, particle densities and injection yields deteriorate, indicating the need for different injection strategies to extend XFEL imaging to smaller targets, such as single proteins. This work demonstrates the power of Rayleigh-scattering microscopy for studying focused aerosol beams quantitatively. It lays the foundation for lab-based injector development and online injection diagnostics for XFEL research. In the future, the technique may also find application in other fields that employ focused aerosol beams, such as mass spectrometry, particle deposition, fuel injection and three-dimensional printing techniques.
Collapse
Affiliation(s)
- Max F. Hantke
- Chemistry Research Laboratory, Department of Chemistry, Oxford University, 12 Mansfield Rd, Oxford OX1 3TA, UK
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
| | - Johan Bielecki
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | - Olena Kulyk
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, Prague CZ-18221, Czech Republic
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
| | - Daniel S. D. Larsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
| | - Hemanth K. N. Reddy
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
| | - Richard A. Kirian
- Department of Physics, Arizona State University, 550 E. Tyler Drive, Tempe, AZ 85287, USA
| | - Jakob Andreasson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, Prague CZ-18221, Czech Republic
- Condensed Matter Physics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, Prague CZ-18221, Czech Republic
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
8
|
Jönsson HO, Caleman C, Andreasson J, Tîmneanu N. Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission. IUCRJ 2017; 4:778-784. [PMID: 29123680 PMCID: PMC5668863 DOI: 10.1107/s2052252517014154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/02/2017] [Indexed: 05/31/2023]
Abstract
Serial femtosecond crystallography is an emerging and promising method for determining protein structures, making use of the ultrafast and bright X-ray pulses from X-ray free-electron lasers. The upcoming X-ray laser sources will produce well above 1000 pulses per second and will pose a new challenge: how to quickly determine successful crystal hits and avoid a high-rate data deluge. Proposed here is a hit-finding scheme based on detecting photons from plasma emission after the sample has been intercepted by the X-ray laser. Plasma emission spectra are simulated for systems exposed to high-intensity femtosecond pulses, for both protein crystals and the liquid carrier systems that are used for sample delivery. The thermal radiation from the glowing plasma gives a strong background in the XUV region that depends on the intensity of the pulse, around the emission lines from light elements (carbon, nitrogen, oxygen). Sample hits can be reliably distinguished from the carrier liquid based on the characteristic emission lines from heavier elements present only in the sample, such as sulfur. For buffer systems with sulfur present, selenomethionine substitution is suggested, where the selenium emission lines could be used both as an indication of a hit and as an aid in phasing and structural reconstruction of the protein.
Collapse
Affiliation(s)
- H. Olof Jönsson
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, DE-226 07 Hamburg, Germany
| | - Jakob Andreasson
- ELI Beamlines, Institute of Physics, Czech Academy of Science, Na Slovance 2, CZ-182 21 Prague, Czech Republic
- Condensed Matter Physics, Department of Physics, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Nicuşor Tîmneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
9
|
van der Schot G, Svenda M, Maia FRNC, Hantke MF, DePonte DP, Seibert MM, Aquila A, Schulz J, Kirian RA, Liang M, Stellato F, Bari S, Iwan B, Andreasson J, Timneanu N, Bielecki J, Westphal D, Nunes de Almeida F, Odić D, Hasse D, Carlsson GH, Larsson DSD, Barty A, Martin AV, Schorb S, Bostedt C, Bozek JD, Carron S, Ferguson K, Rolles D, Rudenko A, Epp SW, Foucar L, Rudek B, Erk B, Hartmann R, Kimmel N, Holl P, Englert L, Loh ND, Chapman HN, Andersson I, Hajdu J, Ekeberg T. Open data set of live cyanobacterial cells imaged using an X-ray laser. Sci Data 2016; 3:160058. [PMID: 27479514 PMCID: PMC4968219 DOI: 10.1038/sdata.2016.58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/18/2016] [Indexed: 01/20/2023] Open
Abstract
Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.
Collapse
Affiliation(s)
- Gijs van der Schot
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Max F Hantke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Daniel P DePonte
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - M Marvin Seibert
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Andrew Aquila
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Joachim Schulz
- European XFEL, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - Richard A Kirian
- Arizona State University, Physics Department, PO Box 871504, Tempe, Arizona 85287-1504, USA
| | - Mengning Liang
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Francesco Stellato
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.,I.N.F.N. and Physics Department, University of Rome 'Tor Vergata', Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sadia Bari
- European XFEL, Albert-Einstein-Ring 19, 22761 Hamburg, Germany.,Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Bianca Iwan
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Jakob Andreasson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden.,ELI beamlines, Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Prague, Czech Republic
| | - Nicusor Timneanu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden.,Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, Box 516, SE-751 20 Uppsala, Sweden
| | - Johan Bielecki
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | | | - Duško Odić
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden.,Center for Technology Transfer and Innovation, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Gunilla H Carlsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Daniel S D Larsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Anton Barty
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrew V Martin
- ARC Centre of Excellence for Advanced Molecular Imaging, School of Physics, The University of Melbourne, Victoria 3010, Australia
| | - Sebastian Schorb
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Christoph Bostedt
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - John D Bozek
- Synchrotron SOLEIL, L'orme des Merisiers roundabout of St Aubin, 91190 Saint Aubin, France
| | - Sebastian Carron
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Ken Ferguson
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Daniel Rolles
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany.,Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Artem Rudenko
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany.,Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Sascha W Epp
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany.,Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Lutz Foucar
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany.,Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Benedikt Rudek
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany.,Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Benjamin Erk
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany.,Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | | | - Nils Kimmel
- Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany.,Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany
| | - Peter Holl
- PNSensor GmbH, Otto-Hahn-Ring 6, 81739 Munich, Germany
| | - Lars Englert
- Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany.,Ultrafast Coherent Dynamics Group, University Oldenburg, Carl-von-Ossietzky Strasse 9-11, 26129 Oldenburg, Germany
| | - N Duane Loh
- Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4 Blk S1 A, Singapore 117546, Singapore
| | - Henry N Chapman
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.,University of Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden.,European XFEL, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - Tomas Ekeberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| |
Collapse
|