1
|
Feng T, Li J, Xie W, Cheng Q, Ta D. Adaptively multi-scale microstructure characterization of cancellous bone via Photoacoustic signal decomposition. ULTRASONICS 2024; 144:107407. [PMID: 39173274 DOI: 10.1016/j.ultras.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
Osteoporosis is a systemic disease with a high incidence in the elderly and seriously affects the quality of life of patients. Photoacoustic (PA) technology, which combines the advantages of light and ultrasound, can provide information about the physiological structure and chemical information of biological tissues in a non-invasive and non-radiative way. Due to the complex structural characteristics of bone tissue, PA signals generated by bone tissue are non-stationary and nonlinear. However, conventional PA signal processing methods are not effective for non-stationary signal processing. In this study, an empirical mode decomposition (EMD)-based Hilbert-Huang transform (HHT) PA signal analysis method, called HHT PA signal analysis (HPSA), was developed to assess the microstructure information of bone tissue, which is closely related to bone health. The feasibility of the HPSA method in bone health assessment was proven by numerical simulation and experimental studies on animal samples with different bone volume/total volume (BV/TV) and bone mineral densities. First, based on adaptive EMD, the different modes correlated with multi-scale information were mined from the PA signal, the correlations between different intrinsic mode function (IMF) modes and BV/TVs were analyzed, and the optimal mode for more efficient PA time-frequency analysis was selected. Second, multi-wavelength HPSA was used to assess the changes in the chemical components of the bone tissue. The results demonstrate that the HPSA method can distinguish bones with different BV/TVs and microstructure conditions adaptively with high efficiency. They further emphasize the potential of PA techniques in characterizing biological tissues in bones for early and rapid detection of bone diseases.
Collapse
Affiliation(s)
- Ting Feng
- Institute of Biomedical Engineering & Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China.
| | - Jieshu Li
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weiya Xie
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; Qingdao innovation and development base, Harbin Engineering University, Qingdao 266000, China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Dean Ta
- Institute of Biomedical Engineering & Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Xu Z, Locke CS, Morris R, Jamison D, Kozloff KM, Wang X. Development of a semi-anthropomorphic photoacoustic calcaneus phantom based on nano computed tomography and stereolithography 3D printing. J Orthop Res 2024; 42:647-660. [PMID: 37804209 PMCID: PMC10932887 DOI: 10.1002/jor.25702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/28/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Osteoporosis is a major public health threat with significant physical, psychosocial, and financial consequences. The calcaneus bone has been used as a measurement site for risk prediction of osteoporosis by noninvasive quantitative ultrasound (QUS). By adding optical contrast to QUS, our previous studies indicate that a combination of photoacoustic (PA) and QUS, that is, PAQUS, provides a novel opportunity to assess the health of human calcaneus. Calibration of the PAQUS system is crucial to realize quantitative and repeatable measurements of the calcaneus. Therefore, a phantom which simulates the optical, ultrasound, and architectural properties of the human calcaneus, for PAQUS system calibration, is required. Additionally, a controllable phantom offers researchers a versatile framework for developing versatile structures, allowing more controlled assessment of how varying bone structures cause defined alterations in PA and QUS signals. In this work, we present the first semi-anthropomorphic calcaneus phantom for PAQUS. The phantom was developed based on nano computed-tomography (nano-CT) and stereolithography 3D printing, aiming to maximize accuracy in the approximation of both trabecular and cortical bone microstructures. Compared with the original digital input calcaneus model from a human cadaveric donor, the printed model achieved accuracies of 71.15% in total structure and 87.21% in bone volume fraction. Inorganic materials including synthetic blood, mineral oil, intralipid, and agar gel were used to model the substitutes of bone marrow and soft tissue, filling and covering the calcaneus phantom. The ultrasound and optical properties of this phantom were measured, and the results were consistent with those measured by a commercialized device and from previous in vivo studies. In addition, a short-term stability test was conducted for this phantom, demonstrating that the optical and ultrasound properties of the phantom were stable without significant variation over 1 month. This semi-anthropomorphic calcaneus phantom shows structural, ultrasound, and optical properties similar to those from a human calcaneus in vivo and, thereby, can serve as an effective source for equipment calibration and the comprehensive study of human patients.
Collapse
Affiliation(s)
- Zhanpeng Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Conor S. Locke
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - DeAndre Jamison
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kenneth M. Kozloff
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
3
|
Xu W, Xie W, Yu D, Sun H, Gu Y, Tao X, Qian M, Cheng L, Wang H, Cheng Q. Theoretical and experimental study of attenuation in cancellous bone. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11526. [PMID: 38505736 PMCID: PMC10949015 DOI: 10.1117/1.jbo.29.s1.s11526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
Significance Photoacoustic (PA) technology shows great potential for bone assessment. However, the PA signals in cancellous bone are complex due to its complex composition and porous structure, making such signals challenging to apply directly in bone analysis. Aim We introduce a photoacoustic differential attenuation spectrum (PA-DAS) method to separate the contribution of the acoustic propagation path to the PA signal from that of the source, and theoretically and experimentally investigate the propagation attenuation characteristics of cancellous bone. Approach We modified Biot's theory by accounting for the high frequency and viscosity. In parallel with the rabbit osteoporosis model, we build an experimental PA-DAS system featuring an eccentric excitation differential detection mechanism. Moreover, we extract a PA-DAS quantization parameter-slope-to quantify the attenuation of high- and low-frequency components. Results The results show that the porosity of cancellous bone can be evaluated by fast longitude wave attenuation at different frequencies and the PA-DAS slope of the osteoporotic group is significantly lower compared with the normal group (**p < 0.01 ). Conclusions Findings demonstrate that PA-DAS effectively differentiates osteoporotic bone from healthy bone, facilitating quantitative assessment of bone mineral density, and osteoporosis diagnosis.
Collapse
Affiliation(s)
- Wenyi Xu
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Weiya Xie
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Dong Yu
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Haohan Sun
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Ying Gu
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Xingliang Tao
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Menglu Qian
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Liming Cheng
- Tongji University, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Shanghai, China
| | - Hao Wang
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Qian Cheng
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Shanghai, China
- Frontiers Science Center for Intelligent Autonomous Systems, Ministry of Education, Shanghai, China
| |
Collapse
|
4
|
Gonzalez EA, Bell MAL. Photoacoustic Imaging and Characterization of Bone in Medicine: Overview, Applications, and Outlook. Annu Rev Biomed Eng 2023; 25:207-232. [PMID: 37000966 DOI: 10.1146/annurev-bioeng-081622-025405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Photoacoustic techniques have shown promise in identifying molecular changes in bone tissue and visualizing tissue microstructure. This capability represents significant advantages over gold standards (i.e., dual-energy X-ray absorptiometry) for bone evaluation without requiring ionizing radiation. Instead, photoacoustic imaging uses light to penetrate through bone, followed by acoustic pressure generation, resulting in highly sensitive optical absorption contrast in deep biological tissues. This review covers multiple bone-related photoacoustic imaging contributions to clinical applications, spanning bone cancer, joint pathologies, spinal disorders, osteoporosis, bone-related surgical guidance, consolidation monitoring, and transsphenoidal and transcranial imaging. We also present a summary of photoacoustic-based techniques for characterizing biomechanical properties of bone, including temperature, guided waves, spectral parameters, and spectroscopy. We conclude with a future outlook based on the current state of technological developments, recent achievements, and possible new directions.
Collapse
Affiliation(s)
- Eduardo A Gonzalez
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Muyinatu A Lediju Bell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Electrical and Computer Engineering and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA;
| |
Collapse
|
5
|
Zhang M, Wen L, Zhou C, Pan J, Wu S, Wang P, Zhang H, Chen P, Chen Q, Wang X, Cheng Q. Identification of different types of tumors based on photoacoustic spectral analysis: preclinical feasibility studies on skin tumors. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:065004. [PMID: 37325191 PMCID: PMC10261702 DOI: 10.1117/1.jbo.28.6.065004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
Significance Collagen and lipid are important components of tumor microenvironments (TME) and participates in tumor development and invasion. It has been reported that collagen and lipid can be used as a hallmark to diagnosis and differentiate tumors. Aim We aim to introduce photoacoustic spectral analysis (PASA) method that can provide both the content and structure distribution of endogenous chromophores in biological tissues to characterize the tumor-related features for identifying different types of tumors. Approach Ex vivo human tissues with suspected squamous cell carcinoma (SCC), suspected basal cell carcinoma (BCC), and normal tissue were used in this study. The relative lipid and collagen contents in the TME were assessed based on the PASA parameters and compared with histology. Support vector machine (SVM), one of the simplest machine learning tools, was applied for automatic skin cancer type detection. Results The PASA results showed that the lipid and collagen levels of the tumors were significantly lower than those of the normal tissue, and there was a statistical difference between SCC and BCC (p < 0.05 ), consistent with the histopathological results. The SVM-based categorization achieved diagnostic accuracies of 91.7% (normal), 93.3% (SCC), and 91.7% (BCC). Conclusions We verified the potential use of collagen and lipid in the TME as biomarkers of tumor diversity and achieved accurate tumor classification based on the collagen and lipid content using PASA. The proposed method provides a new way to diagnose tumors.
Collapse
Affiliation(s)
- Mengjiao Zhang
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Long Wen
- Tongji University, Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Shanghai, China
| | - Chu Zhou
- Tongji University, Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Shanghai, China
| | - Jing Pan
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Shiying Wu
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Peiru Wang
- Tongji University, Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Shanghai, China
| | - Haonan Zhang
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
- Tongji University, Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Shanghai, China
| | - Panpan Chen
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Qi Chen
- Tongji University, Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Shanghai, China
| | - Xiuli Wang
- Tongji University, Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Shanghai, China
| | - Qian Cheng
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Shanghai, China
- Frontiers Science Center for Intelligent Autonomous Systems, Ministry of Education, China
| |
Collapse
|
6
|
Biswas D, Roy S, Vasudevan S. Biomedical Application of Photoacoustics: A Plethora of Opportunities. MICROMACHINES 2022; 13:1900. [PMID: 36363921 PMCID: PMC9692656 DOI: 10.3390/mi13111900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The photoacoustic (PA) technique is a non-invasive, non-ionizing hybrid technique that exploits laser irradiation for sample excitation and acquires an ultrasound signal generated due to thermoelastic expansion of the sample. Being a hybrid technique, PA possesses the inherent advantages of conventional optical (high resolution) and ultrasonic (high depth of penetration in biological tissue) techniques and eliminates some of the major limitations of these conventional techniques. Hence, PA has been employed for different biomedical applications. In this review, we first discuss the basic physics of PA. Then, we discuss different aspects of PA techniques, which includes PA imaging and also PA frequency spectral analysis. The theory of PA signal generation, detection and analysis is also detailed in this work. Later, we also discuss the major biomedical application area of PA technique.
Collapse
Affiliation(s)
- Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, HP, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, HP, India
| | - Srivathsan Vasudevan
- Discipline of Electrical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol 453552, MP, India
| |
Collapse
|
7
|
Ma K, Wu S, Huang S, Xie W, Zhang M, Chen Y, Zhu P, Liu J, Cheng Q. Myocardial infarct border demarcation by dual-wavelength photoacoustic spectral analysis. PHOTOACOUSTICS 2022; 26:100344. [PMID: 35282297 PMCID: PMC8907670 DOI: 10.1016/j.pacs.2022.100344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Myocardial infarction (MI) is a major cause of morbidity and mortality worldwide. Modern therapeutic strategies targeting the infarct border area have been shown to benefit overall cardiac function after MI. However, there is no non-invasive diagnostic technique to precisely demarcate the MI boundary till to now. In this study, the feasibility of demarcating the MI border using dual-wavelength photoacoustic spectral analysis (DWPASA) was investigated. To quantify specific molecular characteristics before and after MI, "the ratio of the areas of the power spectral densities (R APSD)" was computed from the DWPASA results. Compared to the normal tissue, MI tissue was shown to contain more collagen, resulting in higher R APSD values (p < 0.001). Cross-sectional MI lengths and the MI area border demarcated in two dimensions by DWPASA were in substantial agreement with Masson staining (ICC = 0.76, p < 0.001, IoU = 0.72). R APSD has been proved that can be used as an indicator of disease evolution to distinguish normal and pathological tissues. These findings indicate that the DWPASA method may offer a new diagnostic solution for determining MI borders.
Collapse
Affiliation(s)
- Kangmu Ma
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiying Wu
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
- MOE Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiya Xie
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
- MOE Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
| | - Mengjiao Zhang
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
- MOE Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
| | - Yingna Chen
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
- MOE Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
| | - Pengxiong Zhu
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Cardiac Surgery, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
- MOE Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Surowiec RK, Allen MR, Wallace JM. Bone hydration: How we can evaluate it, what can it tell us, and is it an effective therapeutic target? Bone Rep 2022; 16:101161. [PMID: 35005101 PMCID: PMC8718737 DOI: 10.1016/j.bonr.2021.101161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022] Open
Abstract
Water constitutes roughly a quarter of the cortical bone by volume yet can greatly influence mechanical properties and tissue quality. There is a growing appreciation for how water can dynamically change due to age, disease, and treatment. A key emerging area related to bone mechanical and tissue properties lies in differentiating the role of water in its four different compartments, including free/pore water, water loosely bound at the collagen/mineral interfaces, water tightly bound within collagen triple helices, and structural water within the mineral. This review summarizes our current knowledge of bone water across the four functional compartments and discusses how alterations in each compartment relate to mechanical changes. It provides an overview on the advent of- and improvements to- imaging and spectroscopic techniques able to probe nano-and molecular scales of bone water. These technical advances have led to an emerging understanding of how bone water changes in various conditions, of which aging, chronic kidney disease, diabetes, osteoporosis, and osteogenesis imperfecta are reviewed. Finally, it summarizes work focused on therapeutically targeting water to improve mechanical properties.
Collapse
Affiliation(s)
- Rachel K. Surowiec
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
9
|
Feng T, Xie Y, Xie W, Chen Y, Wang P, Li L, Han J, Ta D, Cheng L, Cheng Q. Characterization of multi-biomarkers for bone health assessment based on photoacoustic physicochemical analysis method. PHOTOACOUSTICS 2022; 25:100320. [PMID: 35004172 PMCID: PMC8717597 DOI: 10.1016/j.pacs.2021.100320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/20/2021] [Accepted: 12/05/2021] [Indexed: 05/12/2023]
Abstract
Photoacoustic (PA) techniques are potential alternatives to histopathology. The physicochemical spectrogram (PCS) generated by the PA measurement at multiple wavelengths can presents the morphology and chemical composition target at multi-biomarkers simultaneously. In this work, via multi-wavelength PA measurements performed on rabbit bone models, we investigated the feasibility of using PCSs for bone health assessment. A comprehensive analysis of the PCSs, termed PA physicochemical analysis (PAPCA), was conducted. The "slope" and "relative content" were used as the PAPCA-quantified parameters to characterize the changes in the physical and chemical properties of bone tissue, respectively. The findings are consistent well with the gold-standard imaging results. It demonstrated that the PAPCA can be used to characterize both the microstructure and content of multi-biomarkers which highly related with bone health. Considering the PA technique is noninvasive and radiation-free, it has great potential in the implementation and monitoring of bone diseases progression.
Collapse
Affiliation(s)
- Ting Feng
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yejing Xie
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weiya Xie
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yingna Chen
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Peng Wang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Lan Li
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Jing Han
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Liming Cheng
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
10
|
Piezoelectric and Opto-Acoustic Material Properties of Bone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:319-346. [DOI: 10.1007/978-3-030-91979-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Rathi N, Sinha S, Chinni B, Dogra V, Rao N. Feasibility of Quantitative Tissue Characterization Using Novel Parameters Extracted From Photoacoustic Power Spectrum Considering Multiple Absorbers. ULTRASONIC IMAGING 2022; 44:13-24. [PMID: 34711106 DOI: 10.1177/01617346211055053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Frequency domain analysis of radio frequency signal is performed to differentiate between different tissue categories in terms of spectral parameters. However, due to complex relationship between the absorber size and spectral parameters, they cannot be used for quantitative tissue characterization. In an earlier study, we showed that using linear relationship between absorber size and two new spectral parameters namely number of lobes and average lobe width, absorber size can be successfully recovered from photoacoustic signal generated by single absorber. As actual biological tissue contains multiple absorbers, in this study we extended the application of these two new spectral parameters for computing absorber size from signals generated by multiple PA absorbers. We revisited our analytical model to establish two new linear relationships between the absorber radius and number of lobes as well as average lobe width considering multiple absorbers with bandlimited acquisition. A simulation study was performed to validate these linear relationships. A retrospective ex vivo study, in which the spectral parameters were computed using multiwavelength photoacoustic signals, was performed with freshly exercised thyroid specimens from 38 actual human patients undergoing thyroidectomy after having a diagnosis of suspected thyroid lesions. From statistical analysis it is shown that both the parameters were significantly different between malignant and non-malignant thyroid and malignant and normal thyroid tissue. Performance of the supervised classification with the computed spectral parameters showed that the extracted parameters could be successfully used to differentiate malignant thyroid tissue from normal thyroid tissue with reasonable degree of accuracy.
Collapse
Affiliation(s)
- Nikita Rathi
- Department of Electronics and Communication, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Saugata Sinha
- Department of Electronics and Communication, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Bhargava Chinni
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Vikram Dogra
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Navalgund Rao
- Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
12
|
Feng T, Ge Y, Xie Y, Xie W, Liu C, Li L, Ta D, Jiang Q, Cheng Q. Detection of collagen by multi-wavelength photoacoustic analysis as a biomarker for bone health assessment. PHOTOACOUSTICS 2021; 24:100296. [PMID: 34522607 PMCID: PMC8426564 DOI: 10.1016/j.pacs.2021.100296] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 05/26/2023]
Abstract
Collagen is an important biomarker of osteoporosis progression. Noninvasive, multispectral, photoacoustic (PA) techniques use pulsed laser light to induce PA signals to facilitate the visualization of chemical components that are strongly related to tissue health. In this study, the feasibility of multi-wavelength PA (MWPA) measurement of the collagen in bone, using the wavelength range of 1300-1800 nm, was investigated. First, the feasibility of this approach for detecting the collagen content of bone was demonstrated by means of numerical simulation. Then, ex vivo experiments were conducted on both animal and human bone specimens with different bone densities using the MWPA method. The relative collagen content was extracted and compared with the results of micro-computed tomography (micro-CT) and histology. The results showed that the "relative collagen content" parameter obtained using the MWPA approach correlated well with the bone volume ratio obtained from micro-CT images and histological analysis results. This study highlights the potential of the proposed PA technique for determining the collagen content of bones as a biomarker for bone health assessment.
Collapse
Affiliation(s)
- Ting Feng
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuxiang Ge
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, Jiangsu, China
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Yejing Xie
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weiya Xie
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Lan Li
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
13
|
Feng T, Zhu Y, Morris R, kozloff KM, Wang X. The feasibility study of the transmission mode photoacoustic measurement of human calcaneus bone in vivo. PHOTOACOUSTICS 2021; 23:100273. [PMID: 34745881 PMCID: PMC8552339 DOI: 10.1016/j.pacs.2021.100273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 05/26/2023]
Abstract
The photoacoustic (PA) technique is uniquely positioned for biomedical applications primarily due to its ability to visualize optical absorption contrast in deep tissue at ultrasound resolution. In this work, via both three-dimensional (3D) numerical simulations and in vivo experiments on human subjects, we investigated the possibility of PA measurement of human calcaneus bones in vivo in a non-invasive manner, as well as its feasibility to differentiate osteoporosis patients from normal subjects. The results from the simulations and the experiments both demonstrated that, when one side of the heel is illuminated by laser with light fluence under the ANSI safety limit, the PA signal generated in the human calcaneus bone can be detected by an ultrasonic transducer at the other side of the heel (i.e. transmission mode). Quantitative power spectral analyses of the calcaneus bone PA signals were also conducted, demonstrating that the microarchitectural changes in calcaneus bone due to osteoporosis can be detected, as reflected by enhanced high frequency components in detected PA bone signal. Further statistical analysis of the experimental results from 10 osteoporosis patients and 10 healthy volunteers showed that the weighted frequency as a quantified PA spectral parameter can differentiate the two subject groups with statistical significance.
Collapse
Affiliation(s)
- Ting Feng
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
| | - Yunhao Zhu
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
| | | | - Kenneth M. kozloff
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
- Department of Orthopaedic Surgery, University of Michigan Medical School, MI 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
- Department of Radiology, University of Michigan Medical School, MI 48109, USA
| |
Collapse
|
14
|
Chen Y, Xu C, Zhang Z, Zhu A, Xu X, Pan J, Liu Y, Wu D, Huang S, Cheng Q. Prostate cancer identification via photoacoustic spectroscopy and machine learning. PHOTOACOUSTICS 2021; 23:100280. [PMID: 34168956 PMCID: PMC8209684 DOI: 10.1016/j.pacs.2021.100280] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/14/2021] [Accepted: 06/04/2021] [Indexed: 05/02/2023]
Abstract
Photoacoustic spectroscopy can generate abundant chemical and physical information about biological tissues. However, this abundance of information makes it difficult to compare these tissues directly. Data mining methods can circumvent this problem. We describe the application of machine-learning methods (including unsupervised hierarchical clustering and supervised classification) to the diagnosis of prostate cancer by photoacoustic spectrum analysis. We focus on the content and distribution of hemoglobin, collagen, and lipids, because these molecules change during the development of prostate cancer. A higher correlation among the ultrasonic power spectra of these chemical components is observed in cancerous than in normal tissues, indicating that the microstructural distributions in cancerous tissues are more consistent. Different classifiers applied in cancer-tissue diagnoses achieved an accuracy of 82 % (better than that of standard clinical methods). The technique thus exhibits great potential for painless early diagnosis of aggressive prostate cancer.
Collapse
Affiliation(s)
- Yingna Chen
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhaoyu Zhang
- School of Software Engineering, Tongji University, Shanghai, China
| | - Anqi Zhu
- School of Software Engineering, Tongji University, Shanghai, China
| | - Xixi Xu
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Jing Pan
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Ying Liu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Karlas A, Pleitez MA, Aguirre J, Ntziachristos V. Optoacoustic imaging in endocrinology and metabolism. Nat Rev Endocrinol 2021; 17:323-335. [PMID: 33875856 DOI: 10.1038/s41574-021-00482-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 02/02/2023]
Abstract
Imaging is an essential tool in research, diagnostics and the management of endocrine disorders. Ultrasonography, nuclear medicine techniques, MRI, CT and optical methods are already used for applications in endocrinology. Optoacoustic imaging, also termed photoacoustic imaging, is emerging as a method for visualizing endocrine physiology and disease at different scales of detail: microscopic, mesoscopic and macroscopic. Optoacoustic contrast arises from endogenous light absorbers, such as oxygenated and deoxygenated haemoglobin, lipids and water, or exogenous contrast agents, and reveals tissue vasculature, perfusion, oxygenation, metabolic activity and inflammation. The development of high-performance optoacoustic scanners for use in humans has given rise to a variety of clinical investigations, which complement the use of the technology in preclinical research. Here, we review key progress with optoacoustic imaging technology as it relates to applications in endocrinology; for example, to visualize thyroid morphology and function, and the microvasculature in diabetes mellitus or adipose tissue metabolism, with particular focus on multispectral optoacoustic tomography and raster-scan optoacoustic mesoscopy. We explain the merits of optoacoustic microscopy and focus on mid-infrared optoacoustic microscopy, which enables label-free imaging of metabolites in cells and tissues. We showcase current optoacoustic applications within endocrinology and discuss the potential of these technologies to advance research and clinical practice.
Collapse
Affiliation(s)
- Angelos Karlas
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Partner Site, German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Miguel A Pleitez
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Juan Aguirre
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany.
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
16
|
Zhang M, Chen Y, Xie W, Wu S, Liao J, Cheng Q. Photoacoustic power azimuth spectrum for microvascular evaluation. PHOTOACOUSTICS 2021; 22:100260. [PMID: 33777693 PMCID: PMC7985563 DOI: 10.1016/j.pacs.2021.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 05/08/2023]
Abstract
The tubular structures and dendritic distributions of blood vessels emit anisotropic photoacoustic (PA) signals with different intensities and frequency components at different angles. Therefore, spectral analysis of PA signals from a single angle cannot accurately determine the physical characteristics of microvessels. This study investigated the feasibility of using the PA power azimuth spectrum (PA-PAS) method to evaluate microvessel structures. We mapped the acoustic power spectrum of the PA signals along the azimuth direction. Based on a frequency-domain analysis of the broadband PA signal, we calculated the spectral parameter power-weighted mean frequency (PWMF). The results demonstrate that the PA signal information of the microvessel is mainly concentrated in the direction of its width. In addition, the PWMF decreases linearly with the microvascular size. The experimental findings exhibit good agreement with the simulation results, thus demonstrating that this approach can effectively differentiate the sizes of microvessels.
Collapse
Affiliation(s)
- Mengjiao Zhang
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yingna Chen
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Weiya Xie
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Shiying Wu
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Jiangnan Liao
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
- Corresponding author at: Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China; The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China.
| |
Collapse
|
17
|
Xie W, Feng T, Zhang M, Li J, Ta D, Cheng L, Cheng Q. Wavelet transform-based photoacoustic time-frequency spectral analysis for bone assessment. PHOTOACOUSTICS 2021; 22:100259. [PMID: 33777692 PMCID: PMC7985564 DOI: 10.1016/j.pacs.2021.100259] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 05/08/2023]
Abstract
In this study, we investigated the feasibility of using photoacoustic time-frequency spectral analysis (PA-TFSA) for evaluating the bone mineral density (BMD) and bone structure. Simulations and ex vivo experiments on bone samples with different BMDs and mean trabecular thickness (MTT) were conducted. All photoacoustic signals were processed using the wavelet transform-based PA-TFSA. The power-weighted mean frequency (PWMF) was evaluated to obtain the main frequency component at different times. The y-intercept, midband-fit, and slope of the linearly fitted curve of the PWMF over time were also quantified. The results show that the osteoporotic bone samples with lower BMD and thinner MTT have higher frequency components and lower acoustic frequency attenuation over time, thus higher y-intercept, midband-fit, and slope. The midband-fit and slope were found to be sensitive to the BMD; therefore, both parameters could be used to distinguish between osteoporotic and normal bones (p < 0.05).
Collapse
Key Words
- ARTB, area ratio of trabecular bone
- BMD, bone mineral density
- Bone assessment
- CWT, continuous wavelet transform
- DEXA, dual energy X-ray absorptiometry
- EDTA, ethylenediaminetetraacetic acid
- MTT, mean trabecular thickness
- PA, photoacoustic
- PA-TFS, photoacoustic time-frequency spectrum
- PA-TFSA, photoacoustic time-frequency spectral analysis
- PWMF, power-weighted mean frequency
- Photoacoustic measurement
- QUS, quantitative ultrasound
- ROI, region of interest
- Time-frequency spectral analysis
- US, ultrasound
- Wavelet transform
Collapse
Affiliation(s)
- Weiya Xie
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Ting Feng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Mengjiao Zhang
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Jiayan Li
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, PR China
| | - Liming Cheng
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
18
|
Amidi E, Yang G, Uddin KMS, Luo H, Middleton W, Powell M, Siegel C, Zhu Q. Role of blood oxygenation saturation in ovarian cancer diagnosis using multi-spectral photoacoustic tomography. JOURNAL OF BIOPHOTONICS 2021; 14:e202000368. [PMID: 33377620 PMCID: PMC8044001 DOI: 10.1002/jbio.202000368] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 05/05/2023]
Abstract
In photoacoustic tomography (PAT), a tunable laser typically illuminates the tissue at multiple wavelengths, and the received photoacoustic waves are used to form functional images of relative total haemoglobin (rHbT) and blood oxygenation saturation (%sO2 ). Due to measurement errors, the estimation of these parameters can be challenging, especially in clinical studies. In this study, we use a multi-pixel method to smooth the measurements before calculating rHbT and %sO2 . We first perform phantom studies using blood tubes of calibrated %sO2 to evaluate the accuracy of our %sO2 estimation. We conclude by presenting diagnostic results from PAT of 33 patients with 51 ovarian masses imaged by our co-registered PAT and ultrasound system. The ovarian masses were divided into malignant and benign/normal groups. Functional maps of rHbT and %sO2 and their histograms as well as spectral features were calculated using the PAT data from all ovaries in these two groups. Support vector machine models were trained on different combinations of the significant features. The area under ROC (AUC) of 0.93 (0.95%CI: 0.90-0.96) on the testing data set was achieved by combining mean %sO2 , a spectral feature, and the score of the study radiologist.
Collapse
Affiliation(s)
- Eghbal Amidi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Guang Yang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - K. M. Shihab Uddin
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Hongbo Luo
- Department of Electrical and System Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - William Middleton
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew Powell
- Division of Gynecological Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Cary Siegel
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
19
|
Kratkiewicz K, Manwar R, Zhou Y, Mozaffarzadeh M, Avanaki K. Technical considerations in the Verasonics research ultrasound platform for developing a photoacoustic imaging system. BIOMEDICAL OPTICS EXPRESS 2021; 12:1050-1084. [PMID: 33680559 PMCID: PMC7901326 DOI: 10.1364/boe.415481] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 05/20/2023]
Abstract
Photoacoustic imaging (PAI) is an emerging functional and molecular imaging technology that has attracted much attention in the past decade. Recently, many researchers have used the vantage system from Verasonics for simultaneous ultrasound (US) and photoacoustic (PA) imaging. This was the motivation to write on the details of US/PA imaging system implementation and characterization using Verasonics platform. We have discussed the experimental considerations for linear array based PAI due to its popularity, simple setup, and high potential for clinical translatability. Specifically, we describe the strategies of US/PA imaging system setup, signal generation, amplification, data processing and study the system performance.
Collapse
Affiliation(s)
- Karl Kratkiewicz
- Wayne State University, Department of
Biomedical Engineering, Detroit, MI 48201, USA
- These authors have contributed
equally
| | - Rayyan Manwar
- Richard and Loan Hill Department of
Bioengineering, University of Illinois at Chicago, IL 60607, USA
- These authors have contributed
equally
| | - Yang Zhou
- Wayne State University, Department of
Biomedical Engineering, Detroit, MI 48201, USA
| | - Moein Mozaffarzadeh
- Laboratory of Medical Imaging, Department
of Imaging Physics, Delft University of Technology, The Netherlands
| | - Kamran Avanaki
- Richard and Loan Hill Department of
Bioengineering, University of Illinois at Chicago, IL 60607, USA
| |
Collapse
|
20
|
Feng T, Zhu Y, Morris R, Kozloff KM, Wang X. Functional Photoacoustic and Ultrasonic Assessment of Osteoporosis: A Clinical Feasibility Study. BME FRONTIERS 2020; 2020:1081540. [PMID: 37849970 PMCID: PMC10521673 DOI: 10.34133/2020/1081540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/02/2020] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement. To study the feasibility of combined functional photoacoustic (PA) and quantitative ultrasound (US) for diagnosis of osteoporosis in vivo based on the detection of chemical and microarchitecture (BMA) information in calcaneus bone. Introduction. Clinically available X-ray or US technologies for the diagnosis of osteoporosis do not report important parameters such as chemical information and BMA. With unique advantages, including good sensitivity to molecular and metabolic properties, PA bone assessment techniques hold a great potential for clinical translation. Methods. By performing multiwavelength PA measurements, the chemical information in the human calcaneus bone, including mineral, lipid, oxygenated-hemoglobin, and deoxygenated-hemoglobin, were assessed. In parallel, by performing PA spectrum analysis, the BMA as an important bone physical property was quantified. An unpaired t -test and a two-way ANOVA test were conducted to compare the outcomes from the two subject groups. Results. Multiwavelength PA measurement is capable of assessing the relative contents of several chemical components in the trabecular bone in vivo, including both minerals and organic materials such as oxygenated-hemoglobin, deoxygenated-hemoglobin, and lipid, which are relevant to metabolic activities and bone health. In addition, PA measurements of BMA show good correlations (R 2 up to 0.65) with DEXA. Both the chemical and microarchitectural measurements from PA techniques can differentiate the two subject groups. Conclusion. The results from this initial clinical study suggest that PA techniques, by providing additional chemical and microarchitecture information relevant to bone health, may lead to accurate and early diagnosis, as well as sensitive monitoring of the treatment of osteoporosis.
Collapse
Affiliation(s)
- Ting Feng
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
| | - Yunhao Zhu
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
| | | | - Kenneth M. Kozloff
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
- Department of Orthopaedic Surgery, University of Michigan Medical School, MI 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
- Department of Radiology, University of Michigan Medical School, MI 48109, USA
| |
Collapse
|
21
|
Rui W, Tao C, Liu X. Multiple information extracted from photoacoustic radio-frequency signal and the application on tissue classification. ULTRASONICS SONOCHEMISTRY 2020; 66:105095. [PMID: 32247234 DOI: 10.1016/j.ultsonch.2020.105095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/15/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Photoacoustic imaging is a hybrid biomedical imaging technique, combining rich optical contrasts and good acoustic resolution in deep tissues. As a noninvasive and nonionized imaging method, photoacoustic imaging has shown great potentials in biomedicine in the past decade. In this review, we give a brief introduction of the physical principle and three major implementations of photoacoustic imaging. Then, we present pictures of some recent progress about the extraction of new imaging parameters from photoacoustic radio-frequency signals. These parameters are highly associated with the tissue microstructure characteristics, including characteristic size, number density, and elasticity. This information could give us insight into various properties of tissue in-depth and be applied to tissue classification for basic research and clinical settings.
Collapse
Affiliation(s)
- Wei Rui
- Key Laboratory of Modern Acoustics, Department of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen 51800, China
| | - Chao Tao
- Shenzhen Research Institute of Nanjing University, Shenzhen 51800, China.
| | - Xiaojun Liu
- Key Laboratory of Modern Acoustics, Department of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
22
|
Towards Clinical Translation of LED-Based Photoacoustic Imaging: A Review. SENSORS 2020; 20:s20092484. [PMID: 32349414 PMCID: PMC7249023 DOI: 10.3390/s20092484] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Photoacoustic imaging, with the capability to provide simultaneous structural, functional, and molecular information, is one of the fastest growing biomedical imaging modalities of recent times. As a hybrid modality, it not only provides greater penetration depth than the purely optical imaging techniques, but also provides optical contrast of molecular components in the living tissue. Conventionally, photoacoustic imaging systems utilize bulky and expensive class IV lasers, which is one of the key factors hindering the clinical translation of this promising modality. Use of LEDs which are portable and affordable offers a unique opportunity to accelerate the clinical translation of photoacoustics. In this paper, we first review the development history of LED as an illumination source in biomedical photoacoustic imaging. Key developments in this area, from point-source measurements to development of high-power LED arrays, are briefly discussed. Finally, we thoroughly review multiple phantom, ex-vivo, animal in-vivo, human in-vivo, and clinical pilot studies and demonstrate the unprecedented preclinical and clinical potential of LED-based photoacoustic imaging.
Collapse
|
23
|
The benefits of photoacoustics for the monitoring of drug stability and penetration through tissue-mimicking membranes. Int J Pharm 2020; 580:119233. [DOI: 10.1016/j.ijpharm.2020.119233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 11/20/2022]
|
24
|
Feasibility of quantitative tissue characterization using novel parameters extracted from photoacoustic power spectrum. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Fadhel MN, Hysi E, Zalev J, Kolios MC. Photoacoustic simulations of microvascular bleeding: spectral analysis and its application for monitoring vascular-targeted treatments. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-8. [PMID: 31707772 PMCID: PMC7003142 DOI: 10.1117/1.jbo.24.11.116001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/21/2019] [Indexed: 05/04/2023]
Abstract
Solid tumors are typically supplied nutrients by a network of irregular blood vessels. By targeting these vascular networks, it might be possible to hinder cancer growth and metastasis. Vascular disrupting agents induce intertumoral hemorrhaging, making photoacoustic (PA) imaging well positioned to detect bleeding due to its sensitivity to hemoglobin and its various states. We introduce a fractal-based numerical model of intertumoral hemorrhaging to simulate the PA signals from disrupted tumor blood vessels. The fractal model uses bifurcated cylinders to represent vascular trees. To mimic bleeding from blood vessels, hemoglobin diffusion from microvessels was simulated. In the simulations, the PA signals were detected by a linear array transducer (30 MHz center frequency) of four different vascular trees. The power spectrum of each beamformed PA signal was computed and fitted to a straight line within the −6-dB bandwidth of the receiving transducer. The spectral slope and midband fit (MBF) based on the fit decreased by 0.11 dB / MHz and 2.12 dB, respectively, 1 h post bleeding, while the y-intercept increased by 1.21 dB. The results suggest that spectral PA analysis can be used to measure changes in the concentration and spatial distribution of hemoglobin in tissue without the need to resolve individual vessels. The simulations support the feasibility of using PA imaging and spectral analysis in cancer treatment monitoring by detecting microvessel disruption.
Collapse
Affiliation(s)
- Muhannad N. Fadhel
- Ryerson University, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Keenan Research Center, Toronto, Canada
| | - Eno Hysi
- Ryerson University, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Keenan Research Center, Toronto, Canada
| | - Jason Zalev
- Ryerson University, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Keenan Research Center, Toronto, Canada
| | - Michael C. Kolios
- Ryerson University, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Keenan Research Center, Toronto, Canada
- Address all correspondence to Michael C. Kolios, E-mail:
| |
Collapse
|
26
|
Guo H, Wang Q, Qi W, Sun X, Ke B, Xi L. Assessing the development and treatment of rheumatoid arthritis using multiparametric photoacoustic and ultrasound imaging. JOURNAL OF BIOPHOTONICS 2019; 12:e201900127. [PMID: 31251449 DOI: 10.1002/jbio.201900127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/28/2019] [Accepted: 06/27/2019] [Indexed: 02/05/2023]
Abstract
Rheumatoid arthritis (RA), characterized by polyarthritis, is a chronic, systemic and inflammatory autoimmune disease. In this study, we developed a dual-modality multiparametric photoacoustic and ultrasound imaging technique, and successfully derived multiple parameters such as relative concentration of total hemoglobin (CHbT ), ratio of angiogenesis, joint size and area of synovia to assess the development and treatment of RA. We established a model of adjuvant arthritis using a total number of 15 rats and randomly divided them into three groups: (a) targeted group in which the rats received targeted antirheumatic drugs; (b) nontargeted group in which the rats were treated with nontargeted antirheumatic drugs; (c) control group. We longitudinally monitored the joints of the rats in all three groups for up to 20 days and carried out quantitative analysis to evaluate the development and treatment of RA based on the derived parameters. The results suggest that the proposed dual-modality imaging technique is able to assess the effectiveness of the RA treatment using quantitative hemodynamic and morphological parameters. To show the clinical feasibility of this technique, we performed in vivo joint studies of health volunteers to visualize both structures and inside hemodynamics of the distal interphalangeal joint.
Collapse
Affiliation(s)
- Heng Guo
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Qin Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Bowen Ke
- Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Xi
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
27
|
Gao X, Dai N, Tao C, Liu X. Quantification of number density of random microstructure from a photoacoustic signal by using Nakagami statistics. OPTICS LETTERS 2019; 44:2951-2954. [PMID: 31199353 DOI: 10.1364/ol.44.002951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Tissue microstructure characterization is a valuable tool in diagnosis and staging of many diseases. In this study, we propose a photoacoustic Nakagami statistics method to noninvasively evaluate the number density of random microstructure. The Nakagami parameters are acquired by fitting the photoacoustic signal envelope histogram with Nakagami distribution function. Theoretical calculations and phantom experiments demonstrate that the Nakagami shape parameter is only related to the number density of random microstructure and monotonically increases with the number density. Based on this finding, we propose a photoacoustic tomography modality with the imaging contrast of the Nakagami shape parameter. Experiments show that the proposed method can provide more comprehensive and accurate description of tissue microstructure.
Collapse
|
28
|
Amidi E, Mostafa A, Nandy S, Yang G, Middleton W, Siegel C, Zhu Q. Classification of human ovarian cancer using functional, spectral, and imaging features obtained from in vivo photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:2303-2317. [PMID: 31149374 PMCID: PMC6524604 DOI: 10.1364/boe.10.002303] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/17/2019] [Accepted: 03/20/2019] [Indexed: 05/03/2023]
Abstract
We report in this pilot study the diagnostic results of in vivo imaging of patients with ovarian lesions, using a co-registered photoacoustic and ultrasound (PAT/US) system. A total of 39 ovaries from 24 patients were imaged in vivo. PAT functional features, i.e., blood oxygen saturation (sO2) and relative total hemoglobin (rHbT), PAT image features, and PAT spectral features within a region of interest (ROI) in each ovarian tissue were extracted. To select the significant features, a t-test on each feature was performed, and the independent predictors were determined by evaluating correlation between each pair of predictors. To classify the ovarian lesions, we employed a generalized linear model (GLM) and a support vector machine (SVM). We used these classifiers first to distinguish benign/normal lesions from ovaries with invasive epithelial tumors and then to separate normal/benign lesions from all types of ovarian tumors. We developed classifiers once by inclusion of PAT functional features to assess the best diagnostic performance of the classifiers when multiple wavelengths data are available. Second time, we excluded the PAT functional features from the features set to evaluate the best diagnostic performance if only a single wavelength is available. Our results show that using functional features improves the classification performance, especially for distinguishing normal/benign ovarian lesions from all types of tumors. In this case, an area under ROC curve (AUC) of 0.92, 0.93 of testing data was achieved using a GLM and SVM classifier when functional features were included in the feature set while excluding these features resulted in an AUC of 0.89, 0.92, respectively.
Collapse
Affiliation(s)
- Eghbal Amidi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Atahar Mostafa
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sreyankar Nandy
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Guang Yang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - William Middleton
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cary Siegel
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
29
|
Han SH. Review of Photoacoustic Imaging for Imaging-Guided Spinal Surgery. Neurospine 2018; 15:306-322. [PMID: 30531652 PMCID: PMC6347351 DOI: 10.14245/ns.1836206.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/10/2018] [Indexed: 12/23/2022] Open
Abstract
This review introduces the current technique of photoacoustic imaging as it is applied in imaging-guided surgery (IGS), which provides the surgeon with image visualization and analysis capabilities during surgery. Numerous imaging techniques have been developed to help surgeons perform complex operations more safely and quickly. Although surgeons typically use these kinds of images to visualize targets hidden by bone and other tissues, it is nonetheless more difficult to perform surgery with static reference images (e.g., computed tomography scans and magnetic resonance images) of internal structures. Photoacoustic imaging could enable real-time visualization of regions of interest during surgery. Several researchers have shown that photoacoustic imaging has potential for the noninvasive diagnosis of various types of tissues, including bone. Previous studies of the surgical application of photoacoustic imaging have focused on cancer surgery, but photoacoustic imaging has also recently attracted interest for spinal surgery, because it could be useful for avoiding pedicle breaches and for choosing an appropriate starting point before drilling or pedicle probe insertion. This review describes the current instruments and clinical applications of photoacoustic imaging. Its primary objective is to provide a comprehensive overview of photoacoustic IGS in spinal surgery.
Collapse
Affiliation(s)
- Seung Hee Han
- Division of Biophotonics, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Adipocyte Size Evaluation Based on Photoacoustic Spectral Analysis Combined with Deep Learning Method. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adipocyte size, i.e., the cell area of adipose tissue, is correlated directly with metabolic disease risk in obese humans. This study proposes an approach of processing the photoacoustic (PA) signal power spectrum using a deep learning method to evaluate adipocyte size in human adipose tissue. This approach has the potential to provide noninvasive assessment of adipose tissue dysfunction, replacing traditional invasive methods of evaluating adipose tissue via biopsy and histopathology. A deep neural network with fully connected layers was used to fit the relationship between PA spectrum and average adipocyte size. Experiments on human adipose tissue specimens were performed, and the optimal parameters of the deep learning method were applied to establish the relationship between the PA spectrum and average adipocyte size. By studying different spectral bands in the entire spectral range using the deep network, a spectral band mostly sensitive to the adipocyte size was identified. A method of combining all frequency components of PA spectrum was tested to achieve a more accurate evaluation.
Collapse
|
31
|
Shubert J, Lediju Bell MA. Photoacoustic imaging of a human vertebra: implications for guiding spinal fusion surgeries. Phys Med Biol 2018; 63:144001. [PMID: 29923832 DOI: 10.1088/1361-6560/aacdd3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is well known that there are structural differences between cortical and cancellous bone. However, spinal surgeons currently have no reliable method to non-invasively determine these differences in real-time when choosing the optimal starting point and trajectory to insert pedicle screws and avoid surgical complications associated with breached or weakened bone. This paper explores 3D photoacoustic imaging of a human vertebra to noninvasively differentiate cortical from cancellous bone for this surgical task. We observed that signals from the cortical bone tend to appear as compact, high-amplitude signals, while signals from the cancellous bone have lower amplitudes and are more diffuse. In addition, we discovered that the location of the light source for photoacoustic imaging is a critical parameter that can be adjusted to non-invasively determine the optimal entry point into the pedicle. Once inside the pedicle, statistically significant differences in the contrast and SNR of signals originating from the cancellous core of the pedicle (when compared to signals originating from the surrounding cortical bone) were obtained with laser energies of 0.23-2.08 mJ (p < 0.05). Similar quantitative differences were observed with an energy of 1.57 mJ at distances ⩾6 mm from the cortical bone of the pedicle. These quantifiable differences between cortical and cancellous bone (when imaging with an ultrasound probe in direct contact with each bone type) can potentially be used to ensure an optimal trajectory during surgery. Our results are promising for the introduction and development of photoacoustic imaging systems to overcome a wide range of longstanding challenges with spinal surgeries, including challenges with the occurrence of bone breaches due to misplaced pedicle screws.
Collapse
Affiliation(s)
- Joshua Shubert
- Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States of America
| | | |
Collapse
|
32
|
Sinha S, Dogra VS, Chinni BK, Rao NA. Frequency Domain Analysis of Multiwavelength Photoacoustic Signals for Differentiating Among Malignant, Benign, and Normal Thyroids in an Ex Vivo Study With Human Thyroids. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:2047-2059. [PMID: 28593705 PMCID: PMC5603380 DOI: 10.1002/jum.14259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/09/2017] [Indexed: 05/23/2023]
Abstract
OBJECTIVES This study investigated the capability of spectral parameters, extracted by frequency domain analysis of photoacoustic signals, to differentiate among malignant, benign, and normal thyroid tissue. METHODS We acquired multiwavelength photoacoustic images of freshly excised thyroid specimens collected from 50 patients who underwent thyroidectomy after having a diagnosis of suspected thyroid lesions. A thyroid cytopathologist marked histologic slides of each tissue specimen. These marked slides were used as ground truth to identify the regions of interest (ROIs) corresponding to malignant, benign, and normal thyroid tissue. Three spectral parameters: namely, slope, midband fit, and intercept, were extracted from photoacoustic signals corresponding to different ROIs. RESULTS Spectral parameters were extracted from a total of total of 65 ROIs. According to the ground truth, 12 of 65 ROIs belonged to malignant thyroids; 28 of 65 ROIs belonged to benign thyroids; and 25 of 65 ROIs belonged to normal thyroids. Besides slope, the other 2 spectral parameters and grayscale photoacoustic image pixel values were found to be significantly different (P < .05) between malignant and normal thyroids. Between benign and normal thyroids, all 3 spectral parameters and photoacoustic pixel values were significantly different (P < .05). CONCLUSIONS Preliminary results of our ex vivo human thyroid study show that the spectral parameters extracted from radiofrequency photoacoustic signals as well as the pixel values of 2-dimensional photoacoustic images can be used for differentiating among malignant, benign, and normal thyroid tissue.
Collapse
Affiliation(s)
- Saugata Sinha
- Visvesvaray National Institute of Technology, Nagpur, Maharashtra, INDIA440010
| | - Vikram S. Dogra
- University of Rochester, 601 Elmwood Avenue, Rochester, NY, USA 14642
| | | | - Navalgund A. Rao
- Rochester Institute of Technology, 1 Lomb Memorial Drive, Rochester, NY, USA 14623
| |
Collapse
|
33
|
Huang X, Shi Y, Liu Y, Xu H, Liu Y, Xiao C, Ren J, Nie L. Noninvasive photoacoustic identification and imaging of gut microbes. OPTICS LETTERS 2017; 42:2938-2940. [PMID: 28957212 DOI: 10.1364/ol.42.002938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Homeostasis of the gut microbiota is indispensable for various physiological functions. Its composition and activity co-develop with the host, and especially associate with human colorectal cancer. However, current composition identification methods are complicated and not timely without spatial distribution information. In this Letter, we explored the photoacoustic imaging (PAI) technique to characterize the composition and quantify the proportions of the gut microbes after optical probe labeling. Our experimental results demonstrated that PAI has the potential to identify different gut bacterial species on the spot.
Collapse
|