1
|
Cano-Velázquez MS, Hendriks AL, Picelli L, van Veldhoven RPJ, Fiore A. Temperature-Compensated Solution Concentration Measurements Using Photonic Crystal Fiber-Tip Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:7703. [PMID: 37765760 PMCID: PMC10537503 DOI: 10.3390/s23187703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
We demonstrate fiber optic sensors with temperature compensation for the accurate measurement of ethanol concentration in aqueous solutions. The device consists of two photonic crystal (PhC) fiber-tip sensors: one measures the ethanol concentration via refractive index (RI) changes and the other one is isolated from the liquid for the independent measurement of temperature. The probes utilize an optimized PhC design providing a Lorentzian-like, polarization-independent response, enabling a very low imprecision (pm-level) in the wavelength determination. By combining the information from the two probes, it is possible to compensate for the effect that the temperature has on the concentration measurement, obtaining more accurate estimations of the ethanol concentration in a broad range of temperatures. We demonstrate the simultaneous and single-point measurements of temperature and ethanol concentration in water, with sensitivities of 19 pm/°C and ∼53 pm/%, in the ranges of 25 °C to 55 °C and 0 to 50% (at 25 °C), respectively. Moreover, a maximum error of 1.1% in the concentration measurement, with a standard deviation of ≤0.8%, was obtained in the entire temperature range after compensating for the effect of temperature. A limit of detection as low as 0.08% was demonstrated for the concentration measurement in temperature-stable conditions.
Collapse
Affiliation(s)
- Mildred S Cano-Velázquez
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Arthur L Hendriks
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Luca Picelli
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Rene P J van Veldhoven
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Andrea Fiore
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
2
|
Wei N, Xu P, Yao Y, Li J, Liu E, Luo J. Bragg grating sensor for refractive index based on a D-shaped circular photonic crystal fiber. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:800-805. [PMID: 36215440 DOI: 10.1364/josaa.453467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/16/2022] [Indexed: 05/24/2023]
Abstract
In this paper, a silica-based D-shaped circular photonic crystal fiber Bragg grating sensor for refractive index sensing is proposed theoretically. D-shaped fiber construction can effectively enhance the coupling effect between the guiding mode and external liquid analyte, which then causes a distinct shift in the typical reflection spectrum as the refractive index of the analyte varies. This design exhibits highly improved sensitivity of 487 nm/RIU in a large refractive index range from 1.30 to 1.40 compared with the previous fiber grating sensors. Study of the dependence of sensing performance on the structure parameters suggests that the resonance peak shifts towards longer wavelengths with the increased air-hole diameter of fiber, while it is almost immobile as the hole spacing and the number of air-hole layers change in a certain range. For the influence of the Bragg grating structure, results show that the resonance peak is not sensitive to the grating length, but linearly increases as the grating period expands. The effects of polishing depth and fiber preparation error on the sensor are also discussed in detail. This high-sensitivity sensor based on a D-shaped photonic crystal fiber and Bragg grating has great potential in biochemical detection, environmental monitoring, and medical sensing.
Collapse
|
3
|
Memon SF, Wang R, Strunz B, Chowdhry BS, Pembroke JT, Lewis E. A Review of Optical Fibre Ethanol Sensors: Current State and Future Prospects. SENSORS 2022; 22:s22030950. [PMID: 35161695 PMCID: PMC8840036 DOI: 10.3390/s22030950] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/04/2022]
Abstract
A range of optical fibre-based sensors for the measurement of ethanol, primarily in aqueous solution, have been developed and are reviewed here. The sensing approaches can be classified into four groups according to the measurement techniques used, namely absorption (or absorbance), external interferometric, internal fibre grating and plasmonic sensing. The sensors within these groupings can be compared in terms of their characteristic performance indicators, which include sensitivity, resolution and measurement range. Here, particular attention is paid to the potential application areas of these sensors as ethanol production is globally viewed as an important industrial activity. Potential industrial applications are highlighted in the context of the emergence of the internet of things (IoT), which is driving widespread utilization of these sensors in the commercially significant industrial and medical sectors. The review concludes with a summary of the current status and future prospects of optical fibre ethanol sensors for industrial use.
Collapse
Affiliation(s)
- Sanober Farheen Memon
- Optical Fibre Sensors Research Centre, University of Limerick, V94 T9PX Limerick, Ireland;
- Department of Electronic and Computer Engineering, University of Limerick, V94 T9PX Limerick, Ireland;
- Correspondence: (S.F.M.); (E.L.)
| | - Ruoning Wang
- Optical Fibre Sensors Research Centre, University of Limerick, V94 T9PX Limerick, Ireland;
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Bob Strunz
- Department of Electronic and Computer Engineering, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Bhawani Shankar Chowdhry
- NCRA-CMS Lab, IICT, Mehran University of Engineering and Technology, Jamshoro 76062, Sindh, Pakistan;
| | - J. Tony Pembroke
- Department of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Elfed Lewis
- Optical Fibre Sensors Research Centre, University of Limerick, V94 T9PX Limerick, Ireland;
- Department of Electronic and Computer Engineering, University of Limerick, V94 T9PX Limerick, Ireland;
- Correspondence: (S.F.M.); (E.L.)
| |
Collapse
|
4
|
Naku W, Zhu C, Nambisan AK, Gerald RE, Huang J. Machine learning identifies liquids employing a simple fiber-optic tip sensor. OPTICS EXPRESS 2021; 29:40000-40014. [PMID: 34809351 DOI: 10.1364/oe.441144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
We proposed an extremely simple fiber-optic tip sensor system to identify liquids by combining their corresponding droplet evaporation events with analyses using machine learning techniques. Pendant liquid droplets were suspended from the cleaved endface of a single-mode fiber during the experiment. The optical fiber-droplet interface and the droplet-air interface served as two partial reflectors of an extrinsic Fabry-Perot interferometer (EFPI) with a liquid droplet cavity. As the liquid pendant droplet evaporated, its length diminished. A light source can be used to observe the effective change in the net reflectivity of the optical fiber sensor system by observing the resulting optical interference phenomenon of the reflected waves. Using a single-wavelength probing light source, the entire evaporation event of the liquid droplet was precisely captured. The measured time transient response from the fiber-optic tip sensor to an evaporation event of a liquid droplet of interest was then transformed into image data using a continuous wavelet transform. The obtained image data was used to fine-tune pre-trained convolution neural networks (CNNs) for the given task. The results demonstrated that machine learning-based classification methods achieved greater than 98% accuracy in classifying different liquids based on their corresponding droplet evaporation processes, measured by the fiber-optic tip sensor.
Collapse
|
5
|
Abstract
In-fiber interferometric-based sensors are a rapidly growing field, as these sensors exhibit many desirable characteristics compared to their regular fiber-optic counterparts and are being implemented in many promising devices. These sensors have the capability to make extremely accurate measurements on a variety of physical or chemical quantities such as refractive index, temperature, pressure, curvature, concentration, etc. This article is a comprehensive overview of the different types of in-fiber interferometric sensors that presents and discusses recent developments in the field. Basic configurations, a brief approach of the operating principle and recent applications are introduced for each interferometric architecture, making it easy to compare them and select the most appropriate one for the application at hand.
Collapse
|
6
|
Wang Y, Gao R, Xin X. Hollow-core fiber refractive index sensor with high sensitivity and large dynamic range based on a multiple mode transmission mechanism. OPTICS EXPRESS 2021; 29:19703-19714. [PMID: 34266075 DOI: 10.1364/oe.426705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
To balance the tradeoff between the high sensitivity and large dynamic range, a fiber optic refractive index sensor based on the anti-resonant reflecting optical waveguide (ARROW) and mode interference has been proposed and experimentally demonstrated. A double-layered ARROW was formed in a hollow core fiber, and a mode interference was also generated in the fiber skeleton using offset splicing. The proposed fiber optic refractive index sensor possesses both high sensitivity and large dynamic range due to the different refractive index sensitivities of the ARROW and mode interference. The experimental results show that a high refractive index sensitivity of 19014.4 nm/RIU for mode interference and a large dynamic range from 0.04 RIU for ARROW can be achieved simultaneously. The proposed fiber optic refractive index sensor can be used in chemical and biological applications.
Collapse
|
7
|
Zuo G, Hu H, Li S, Yang Z, Chen J, Huang Y, Qu Y, Xia L. Iterative normalized cross-correlation method for absolute optical path difference demodulation of dual interferometers. OPTICS EXPRESS 2021; 29:16595-16610. [PMID: 34154219 DOI: 10.1364/oe.423326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/01/2021] [Indexed: 06/13/2023]
Abstract
It is still a challenge to realize the absolute optical path difference (OPD) demodulation of multi-interference systems with a narrow spectral interval and small OPD interval. In this paper, an iterative normalized cross-correlation algorithm is firstly proposed for demodulating the multiple absolute OPDs of a dual-interference system and applied to optical fiber sensing system. By constructing a template function in combined form, the optimal solutions of its components and OPDs are solved iteratively based on the reconstruction matrix method and cross-correlation algorithm, respectively. The simulation and experiment show that the demodulation accuracies near the OPDs of 560 µm and 660 µm are both up to 5 nm in different spectral intervals from 45 to 80 nm. The simulation results show that all demodulation precisions at the spectral interval of 55 nm do not exceed 4 nm when the OPD changes in the range of 650-670 µm. Besides, the experimental verification shows the temperature accuracy (0.125 °C) with 95% confidence of T-distribution is very close to the control accuracy (0.1 °C). The proposed algorithm can improve the multiplexing capability of optical fiber sensor system and reduce its cost.
Collapse
|
8
|
Wu XJ, Song BB, Wu JX, Huang W. Intermodal interference based refractive index sensor employing elliptical core photonic crystal fiber. OPTOELECTRONICS LETTERS 2021; 17:271-275. [DOI: 10.1007/s11801-021-0175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Indexed: 09/01/2023]
|
9
|
Gao R, Lu D, Guo D, Xin X. Dual-optofluidic waveguide in-line fiber biosensor for real-time label-free detection of interferon-gamma with temperature compensation. OPTICS EXPRESS 2020; 28:10491-10504. [PMID: 32225632 DOI: 10.1364/oe.389766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Temperature cross-sensitivity is a long-standing challenge for most of the in-line fiber optofluidic waveguide biosensors. In this paper, we propose a dual-optofluidic waveguide antiresonant reflecting optical waveguide (ARROW) biosensor for the detection of interferon-gamma (IFN-γ) concentration with temperature compensation. Two Fabry-Perot resonators infiltrated with IFN-γ and NaCl were formed in a hollow core fiber, which generate two resonance dips based on the ARROW model. The optical biosensor for the detection of interferon-gamma (IFN-γ) has been a key research interest in recent years because IFN-γ is an important early biomarker for many serious human diseases. Based on the dual-optofluidic waveguide ARROW biosensor, the IFN-γ concentration can be measured through the modulation of the resonance condition of the ARROW, while the temperature fluctuation can be eliminated due to same thermo-optic coefficients of two infiltration liquids. The experimental results show that the response of the ARROW biosensor can be amplified significantly with the signal-enhanced streptavidin, and the limit of detection of 0.5 ng/ml can be achieved for the IFN-γ concentration. More importantly, the influence of the temperature could be compensated through the referenced resonance dip. The proposed fiber biosensor has a great potential for the real-time detection of IFN-γ concentrations in the fields of health monitoring, cancer prevention, biological engineering, etc.
Collapse
|
10
|
High-Sensitivity, Large Dynamic Range Refractive Index Measurement Using an Optical Microfiber Coupler. SENSORS 2019; 19:s19235078. [PMID: 31766316 PMCID: PMC6928659 DOI: 10.3390/s19235078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022]
Abstract
Wavelength tracking methods are widely employed in fiber-optic interferometers, but they suffer from the problem of fringe order ambiguity, which limits the dynamic range within half of the free spectral range. Here, we propose a new sensing strategy utilizing the unique property of the dispersion turning point in an optical microfiber coupler mode interferometer. Numerical calculations show that the position of the dispersion turning point is sensitive to the ambient refractive index, and its position can be approximated by the dual peaks/dips that lay symmetrically on both sides. In this study, we demonstrate the potential of this sensing strategy, achieving high sensitivities of larger than 5327.3 nm/RIU (refractive index unit) in the whole refractive index (RI) range of 1.333–1.4186. This sensor also shows good performance in narrow RI ranges with high resolution and high linearity. The resolution can be improved by increasing the length of the coupler.
Collapse
|
11
|
Yang J, Yang M, Guan CY, Shi JH, Zhu Z, Li P, Wang PF, Yang J, Yuan LB. In-fiber Mach-Zehnder interferometer with piecewise interference spectrum based on hole-assisted dual-core fiber for refractive index sensing. OPTICS EXPRESS 2018; 26:19091-19099. [PMID: 30114169 DOI: 10.1364/oe.26.019091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
We demonstrate theoretically and experimentally a novel in-fiber Mach-Zehnder interferometer (MZI) with piecewise interference spectrum. The interferometer is constructed by splicing a short section of single eccentric hole-assisted dual-core fiber (SEHADCF) to two single mode fibers (SMFs) with a lateral-offset. Due to the offset splicing and the small distance between cores, different core modes in two cores of the SEHADCF can be excited to form interference at the different wavelength ranges. The discontinuous region of the interference spectrum can be employed as a mark to identify the order of the interference valley. The in-fiber MZI is experimentally investigated as a refractive index sensor, the sensitivity of 353.9 nm/RIU is obtained in the RI range of 1.335 ~1.395. The in-fiber MZI with a high sensitivity has a great potential in biological and chemical applications. Especially, due to the ability to identify the order of interference valleys by the discontinuous region, the proposed in-fiber MZI can improve the reliability of fiber sensors in remote monitoring applications.
Collapse
|
12
|
Zhu C, Zhuang Y, Chen Y, Huang J. A hollow coaxial cable Fabry-Pérot resonator for liquid dielectric constant measurement. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:045003. [PMID: 29716359 DOI: 10.1063/1.5021684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report, for the first time, a low-cost and robust homemade hollow coaxial cable Fabry-Pérot resonator (HCC-FPR) for measuring liquid dielectric constant. In the HCC design, the traditional dielectric insulating layer is replaced by air. A metal disk is welded onto the end of the HCC serving as a highly reflective reflector, and an open cavity is engineered on the HCC. After the open cavity is filled with the liquid analyte (e.g., water), the air-liquid interface acts as a highly reflective reflector due to large impedance mismatch. As a result, an HCC-FPR is formed by the two highly reflective reflectors, i.e., the air-liquid interface and the metal disk. We measured the room temperature dielectric constant for ethanol/water mixtures with different concentrations using this homemade HCC-FPR. Monitoring the evaporation of ethanol in ethanol/water mixtures was also conducted to demonstrate the ability of the sensor for continuously monitoring the change in dielectric constant. The results revealed that the HCC-FPR could be a promising evaporation rate detection platform with high performance. Due to its great advantages, such as high robustness, simple configuration, and ease of fabrication, the novel HCC-FPR based liquid dielectric constant sensor is believed to be of high interest in various fields.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Yiyang Zhuang
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Yizheng Chen
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Jie Huang
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| |
Collapse
|
13
|
Beiu RM, Beiu V, Duma VF. Fiber optic mechanical deformation sensors employing perpendicular photonic crystals. OPTICS EXPRESS 2017; 25:23388-23398. [PMID: 29041640 DOI: 10.1364/oe.25.023388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Existing fiber optics (FOs)-based sensors, including mechanical deformation ones rely on structures embedded along the length of the FO. In this paper, we introduce and evaluate photonic crystals (PCs) embedded into FO cores acting as mechanical deformation sensors which are departing from this classical approach as the PCs are perpendicular to the length of the FO. Another noteworthy difference from classical FO-PC based sensors is that while classical ones rely on amplitude variations, the ones presented here use the phase variations of the electromagnetic components for assessing mechanical deformations. We start with a straightforward rectangular-lattice PC while also exploring a triangular-lattice PC. Light transmission simulations through the proposed FO-PC mechanical deformation sensors were performed using EM Explorer, and revealed their behaviors under small mechanical deformations. These simulations (of the rectangular-lattice and triangular-lattice PCs) show that these two FO-PC mechanical deformation sensors have roughly the same sensitivities while the triangular-lattice PC triggers at a lower threshold than the rectangular-lattice PC.
Collapse
|
14
|
Fu X, Lu P, Ni W, Liao H, Liu D, Zhang J. Phase demodulation of interferometric fiber sensor based on fast Fourier analysis. OPTICS EXPRESS 2017; 25:21094-21106. [PMID: 29041517 DOI: 10.1364/oe.25.021094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
A demodulation method for interferometric fiber sensors (IFSs) is proposed in this article. The phase variation induced by the measurands can be estimated by calculating the Fourier phase at the intrinsic spatial frequencies of the fiber sensor. Theoretical analysis of the demodulation method is discussed in detail. Numerical simulations are put forward to demonstrate the consistency of the demodulation results under different wavelength sampling interval and noise level, showing a better stability compared with the conventional peak wavelength tracking technique. The proposed method is also experimentally demonstrated by an inline multimode interferometer based on a single-mode fiber (SMF) offset-splicing structure. Experimental results indicate that the phase response of different cladding modes can be analyzed simultaneously. Simultaneous measurement of strain and temperature is realized in our confirmatory experiment by analyzing the phase sensitivities of two selected cladding modes.
Collapse
|
15
|
Wang S, Liu S, Ni W, Wu S, Lu P. Dual-wavelength highly-sensitive refractive index sensor. OPTICS EXPRESS 2017; 25:14389-14396. [PMID: 28789025 DOI: 10.1364/oe.25.014389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
We report and demonstrate a highly-sensitive refractive index (RI) sensor based on a linear-cavity dual-wavelength erbium-doped fiber laser (DWEDFL). The optical spectrum of the laser varies as the external environmental RI changes from 1.3 to 1.335. The DWEDFL has a linear-cavity configuration with two fiber Bragg gratings (FBGs) with central wavelengths < 1 nm apart. Since both FBGs share the same EDF gain medium, gain competition occurs in the cavity. Optical loss of one wavelength can be introduced by immersing the sensing component, a 15 mm micro-fiber (MF), in a solution under test. Experimental results demonstrate a high sensitivity of -231.1 dB/RIU (refractive index unit) and 42.6 dB/RIU in the range from 1.300 to 1.335. The relative power change at the two FBG wavelengths reveals a higher sensitivity of -273.7 dB/RIU with better stability due to reduced light source jitter and external perturbation. Due to its high sensitivity and simple structure, the dual wavelengths gain competition RI sensor has potential applications in chemical and biochemical sensing fields.
Collapse
|